I'm trying to verify this identity using index notation: $$ \vec{V} \times \left(\nabla \times \vec{V}\right) = \frac{1}{2} \nabla\left(\vec{V}\cdot \vec{V}\right)-\left(\nabla\cdot\vec{V}\right)\vec{V}$$ Solving the LHS: $$v_i \hat{e_i} \times (\partial_j\hat{e_j} \times v_k \hat{e_k}) = v_i\hat{e_i} \times \varepsilon{_{jkm}} v_{k,j} \hat{e_m} = \varepsilon{_{qim}} \varepsilon{_{jkm}} v_i v_{k,j} \hat{e_q} $$
$$(\delta_{qj} \delta_{ik} - \delta_{qk} \delta_{ji}) v_i v_{k,j} \hat{e_q} = (v_kv_{k,q} - v_{q,j} v_j) \hat{e_q} $$
Which can be expressed as:
$$ (v_kv_{k,q} - v_{q,j} v_j) \hat{e_q} = \left(v_k \frac{\partial v_k}{\partial x_q} - \frac{\partial v_q}{\partial x_j} v_j\right) \hat{e_q}$$
Now, my question is about the way differentials can be "manipulated" so we can prove the identity. Is it possible to write the term $v_k \frac{\partial v_k}{\partial x_q}$ as $ \frac{\partial (v_k)^{2}}{\partial x_q}$ and then perform a derivation so we can end up with something similar to $ \frac{1}{2} \nabla(\vec{V}\cdot \vec{V})$? How could i express $\frac{\partial v_q}{\partial x_j} v_j$ as $(\nabla\cdot\vec{V})\vec{V}$ knowing that i need the subindexes $q$ and $j$ equal so i can write that part as the divergence of $\vec{V}$.