$\int_0^{\infty} |x|^{p_n} f(x) dx = \int_0^1 |x|^{p_n} f(x) dx + \int_1^{\infty} |x|^{p_n} f(x) dx$
Using, $|x|^{p_n} \leq |x|^{p+\delta}$ for $x \in [1,\infty]$ for all $n \geq N$ for some $N$ and $E(|x|^{p+\delta}) < \infty$, by dominated convergenec theorem as mentioned in one of the comments,
$\lim_{n \rightarrow \infty} \int_1^{\infty} |x|^{p_n} f(x) dx = \int_1^{\infty} \lim_{n \rightarrow \infty}|x|^{p_n} f(x) dx = \int_1^{\infty} |x|^{p} f(x) dx$
Now since $|x|^{p_n} \leq 1$ for $x \in [0,1]$ for all $n \geq N$ for some $N$ and $\int_0^1 |1|^{p_n} f(x) dx < \infty$, you can apply dominated convergence theorem again to conclude:
$\lim_{n \rightarrow \infty} \int_0^{1} |x|^{p_n} f(x) dx = \int_0^{1} \lim_{n \rightarrow \infty}|x|^{p_n} f(x) dx = \int_0^{1} |x|^{p} f(x) dx$