Can we show that the series given below,
$$ \begin{align*} 2\pi e^{-1} \Biggl[ \delta(\xi) + e^{-|a\xi|} \sum_{n=0}^{\infty} \sum_{j=0}^{\infty} \frac{(n+2j)!}{(n+j+1)!(n+j)!j!n!} \frac{|a|^{n+1} |\xi|^n}{2^{n+2j+1}} \Biggr] \end{align*} $$
be given terms of a single summation of Modified Bessel function of the following form
$$ \begin{align*} \mathscr{F}\{f\}(x)=2\pi e^{-1}\delta(x)+|a|e^{-1}\sqrt{\pi}\sum_{n=1}^\infty \frac{K_{n-1/2}(|ax|)|ax|^{n-1/2}}{2^{n-5/2}n!(n-1)!}\,? \end{align*} $$
This question is motivated by the answers given for a different problem that is discussed here.