As the comment says, you have just shown that $f(x)-x=f(y)-y$ when $\{x\}=\{y\} \Big(\{x\}=x-[x]\Big)$.
This is the general proof of $f(x)+f(y)=f(x+y)$ and $f(x)f(y)=f(xy)$.
\begin{align}
& \text{let } \begin{cases} P(x, y): f(x)+f(y)=f(x+y). \\ Q(x, y): f(x)f(y)=f(xy). \end{cases} \\
\ \\
P(0, 0): \; & f(0)+f(0)=f(0), f(0)=0. \\
P(x, 1): \; & f(x)f(1)=f(x). \\
\text{if } \; & \color{blue}{f(x) \equiv 0}: \text{Solution.} \\
\text{if } \; & \exists x \text{ s.t. } f(x) \neq 0: f(1)=1. \\
\ \\
& \text{For } n \in \Bbb{N}: \\
\ \\
P(1, n-1): \; & f(n-1)+1=f(n). \\
P(1, n-2): \; & f(n-2)+1=f(n-1). \\
& \vdots \qquad \vdots \qquad \vdots \\
P(1, 1): \; & f(1)+1=f(2). \\
& 1=f(1). \\
\therefore \; & f(n)=\underbrace{1+1+\cdots+1}_{n \text{ times}} = n. \\
\ \\
P(n, -n): \; & f(n)+f(-n)=f(0)=0, f(-n)=-n. \\
\therefore \; & \text{For } p \in \Bbb{Z}, f(p)=p. \\
\ \\
& \text{For } p, q \in \Bbb{Z}: \\
\ \\
Q\left(p, \frac q p\right): \; & pf\left( \frac q p \right) = q, f\left(\frac q p \right) = \frac q p. \\
\therefore \; & \text{For } r \in \Bbb{Q}, f(r)=r. \\
\ \\
Q(x, x): \; & f(x)^2=f(x^2). \\
\therefore \; & x \geq 0 \Rightarrow f(x) \geq 0. \\
\ \\
& \text{For } x \geq y ( x-y \geq 0): \\
P(x-y, y): \; & f(x-y)+f(y)=f(x), f(x-y) \geq 0. \\
\therefore \; & f(x) \geq f(y). \\
\Rightarrow \; & f: \text{ monotonically increasing function.} \\
\ \\
& \text{For } x \in \Bbb{R} \setminus \Bbb{Q}: \\
& \text{Assume that } f(x) > x. \\
\Rightarrow \; & \exists r \in \Bbb{Q} \text{ s.t. } f(x)>r>x. \\
\Rightarrow \; & r>x, f(r) \geq f(x), f(r) \geq f(x) > r, f(r)>r. \\
\Rightarrow \; & \text{Contradiction.} \\
\ \\
& \text{Assume that } f(x) < x. \\
\Rightarrow \; & \exists r \in \Bbb{Q} \text{ s.t. } f(x)<r<x. \\
\Rightarrow \; & r<x, f(r) \leq f(x), f(r) \leq f(x) < r, f(r)<r. \\
\Rightarrow \; & \text{Contradiction.} \\
\ \\
\therefore \; & \color{blue}{f(x)=x} \text{ for } \forall x \in \Bbb{R}. \\
\ \\
\therefore \; & \boxed{\color{blue}{f \equiv 0, f(x)=x}}. \blacksquare
\end{align}