Let $x, y$ be real numbers such that the numbers $x+y,x^2+y^2$ and $x^3+y^3$ are integers. Prove that $x^n+y^n$ is an integer for all natural $n$.
My attempt: Let $x+y=l, x^{2}+y^{2}=m$ for integers $l,m$, then $x y=\frac{l^2-m}{2}$. Now, $\begin{aligned} x^3+y^3 &=(x+y)^3-3 x y(x+y) \\ &=l^3-3 \cdot\left(\frac{l^2-m}{2}\right) \cdot l \\ &=\frac{3 m l}{2}-\frac{l^3}{2} \\ &=\frac{1}{2}\left[3 m l-l^3\right] \end{aligned}$ which is an integer, but i don't know what to do next.