Show that $\binom{2n}{n} = \frac{4^n}{\sqrt{\pi n}} \left(1+\mathcal{O}\bigl(\frac{1}{n}\bigr)\right)$.
Hint: It might be useful that for $f,g: \mathbb{N} \rightarrow \mathbb{R}_{\ge 0}$ with $f(n) = \mathcal{O}(g(n))$ and $g(n) = \mathcal{o}(1)$ holds $\frac{1}{1+f(n)} = 1 +\mathcal{O}(g(n))$.
I tried to evaluate the limit superior of
$$ \bigg\lvert \frac{\binom{2n}{n} - \frac{4^n}{\sqrt{\pi n}} }{\frac{1}{n}} \bigg\rvert = \bigg\lvert \frac{2n \cdots (n+1)}{(n-1)!} - \frac{4^n\sqrt{n}}{\sqrt{\pi}} \bigg\rvert$$
, but I do not get farther than that. Could you please give me a hint?