I know how to prove that for one variable $x\in\mathbb{R}$ : $$\sum_{n\in\mathbb{Z}/\left\{ 0\right\} }\frac{\cos\left(nx\right)}{n^{2}}=\frac{x^{2}}{2}-\pi x+\frac{\pi^{2}}{3}$$ as seen at: Series $\sum_{n=1}^{\infty}\frac{\cos(nx)}{n^2}$.
But what about the multivariable case? If $x\in\mathbb{R}^d$, then is there a neat expression for: $$\sum_{\vec{n}\in\mathbb{Z}^{d}/\left\{ 0\right\} }\frac{\cos\left(\vec{n}\cdot\vec{x}\right)}{\vec{n}^{2}}$$