I am trying to either find or construct a concrete example of a multivariate Beta distribution (Dirichlet) that integrates to $1$.
From the definition of the Beta distribution, we have $$ \int \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)}x^{\alpha_1-1}(1-x)^{\alpha_2-1} \rm \, dx = 1 $$
The Dirichlet is multivariate generalization of the Beta, so it seems to me that the same can be expressed alternatively as follows (where $\sum_{i=1}^k x_i=1$), or am I mistaken? If so, what are the correct integration bounds? $$ \iint \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)}x_1^{\alpha_1-1}x_2^{\alpha_2-1} \rm \, dx_2 \, \rm dx_1 = 1? $$
Now suppose an example with $k = 3; \mathbf{x} = (x_1, x_2, x_3)$.
$$ \iiint \frac{\Gamma(\alpha_1 + \alpha_2 + \alpha_3)}{\Gamma(\alpha_1)\Gamma(\alpha_2)\Gamma(\alpha_3)}x_1^{\alpha_1-1}x_2^{\alpha_2-1}x_3^{\alpha_3-1} \rm \, dx_3 \rm \, dx_2 \, \rm dx_1 $$
How would you go about evaluating this integral? For example, as follows?
$$ =\frac{\Gamma(\alpha_1 + \alpha_2 + \alpha_3)}{\Gamma(\alpha_1)\Gamma(\alpha_2)\Gamma(\alpha_3)} \iint x_1^{\alpha_1-1}x_2^{\alpha_2-1} \frac{1^{\alpha_3}}{\alpha_3} \rm \, \, dx_2 \, \rm dx_1 $$ $$ =\frac{\Gamma(\alpha_1 + \alpha_2 + \alpha_3)}{\Gamma(\alpha_1)\Gamma(\alpha_2)\Gamma(\alpha_3)} \int_{0}^{1} x_1^{\alpha_1-1} \frac{1}{\alpha_2} \frac{1}{\alpha_3} \rm \, \rm dx_1 $$
Finally, is there a less tedious way to do so, besides evaluating the iterated integral over the $k$ variables $x_1, x_2, ... x_k$?