Lang's Algebra has a proposition that states that for a finite separable extension $k \subset E$,
(1)- The map $Tr:E \to k$ is non-zero map and
(2)- The map $B:E \times E \to K$ defined by $B(x,y)=Tr(xy)$ is a non-degenerate bilinear form.
I am confused how it concluded. I am stuck with what is there in the book.
Here is what I feel. (1)-The trace map should not be identically equal to $0$ because otherwise it will be linearly dependent. On the other hand we have Artin's Theorem on linear independence of character.
(2)-If Tr(xy)=0 for every $y \in E$ , then it will imply that $Tr:E \to k$ is the zero map which is a contradiction. (Note for any $x\neq 0$, we have $xE=E$) and thus $x=0$ proving that $B$ is non-degenerate. This proves the result.