Using the integral definition of the inverse Jacobi sn function,
$$\frac d{dz}\text{sn}^{-1}(z,m)=\frac1{\sqrt{1-z^2}\sqrt{1-mz^2}}$$
we get:
$$\frac d{dz}\text{sn}^{-1}(a z,m)=\frac a{\sqrt{1-a^2z^2}\sqrt{1-ma^2z^2}}=\frac1{a\sqrt m\sqrt{\frac1{a^2}-z^2}\sqrt{\frac1{a^2m}-z^2}}= -\frac 1{a\sqrt m\sqrt{z^2-\frac1{a^2}}\sqrt{z^2-\frac1{m a^2}}} $$
Therefore:
$$\frac1{\sqrt m}\frac d{dz}\text{sn}^{-1}\left(\frac z{\sqrt a},\frac 1m\right)=-\frac{\sqrt a}{\sqrt{z^2-a}\sqrt{z^2-am}}$$
and finally,
$$\int_0^1\frac{dx}{\sqrt{(x^2-a)(x^2-b)}}=-\frac{\text{sn}^{-1}\left(\frac1{\sqrt a},\frac ab\right)}{\sqrt a}= -\frac{\text{sn}^{-1}\left(\frac1{\sqrt b},\frac ba\right)}{\sqrt b} $$
Shown here. Also, using inverse Jacobi NS $\text{ns}^{-1}(z,m)$, and $z\in\Bbb R,m<1$ simplifies to:
$$\int_0^1\frac{dx}{\sqrt{(x^2-a)(x^2-b)}}= -\frac{\text{ns}^{-1}\left(\sqrt a,\frac ab\right)}{\sqrt a}= -\frac{\text{ns}^{-1}\left(\sqrt b,\frac ba\right)}{\sqrt b} $$
Using special case formulas, one finds Elliptic K:
$$\int_0^1\frac{dt}{\sqrt{t^2-1}\sqrt{t^2-a}}=-\text K\left(\frac 1a\right)$$