In the book of "Classical Fourier Analysis" by Loukas Grafakos, I am confused by the following detail, the author says that
$$\int_{\mathbb{S}^{n-1}}\theta^{\alpha}d\theta$$ is $0$ when at least one $\alpha_{j}$ is odd, why?
My attemption: suppose that $\alpha_{1}$ is odd then we can split the integral $\int_{\mathbb{S}^{n-1}}\theta^{\alpha}d\theta$ into two parts according the sign of $\theta_{1}$, we denote $\mathbb{S}^{n-1}_{+}$ the positive $\theta_{1}$ part and $\mathbb{S}^{n-1}_{-}$ the negtive $\theta_{1}$ part, and so we write $$\int_{\mathbb{S}^{n-1}}\theta^{\alpha}d\theta=\int_{\mathbb{S}_{+}^{n-1}}\theta^{\alpha}d\theta+\int_{\mathbb{S}_{-}^{n-1}}\theta^{\alpha}d\theta$$ We make the change of variable $\theta_{1}$ to $-\theta_{1}$ in the integral $$\int_{\mathbb{S}_{-}^{n-1}}\theta^{\alpha}d\theta$$ can we get $$\int_{\mathbb{S}_{-}^{n-1}}\theta^{\alpha}d\theta=-\int_{\mathbb{S}_{+}^{n-1}}\theta^{\alpha}d\theta$$?
Is sphere measure $d\theta$ invariant under the reflection $\theta_{1}\to-\theta_{1}$ transformation?
Notation: $\mathbb{S}^{n-1}$ is the sphere in $n$ dimension Euclidean space and $d\theta$ is surface measure on sphere, $\alpha=(\alpha_{1},\dots,\alpha_{n})\in\mathbb{Z}^{n}_{+}$,$\theta=(\theta_{1},\dots,\theta_{n})\in\mathbb{S}^{n-1}$, $\theta^{\alpha}=\theta_{1}^{\alpha_{1}}\theta_{2}^{\alpha_{2}}\cdots\theta_{n}^{\alpha_{n}}$