Evaluating $\int_0^{\frac{\pi}{2}} \ln^2(\cos x)\mathrm{d}x:$ Using
\begin{equation*}
\ln^2(\cos x)=\ln^2(2\cos x)-2\ln(2)\ln(\cos x)-\ln^2(2),
\end{equation*}
we have
\begin{equation*}
\int_0^{\frac{\pi}{2}} \ln^2(\cos x)\mathrm{d}x=\int_0^{\frac{\pi}{2}}\ln^2(2\cos x)\mathrm{d}x-2\ln(2)\int_0^{\frac{\pi}{2}}\ln(\cos x)\mathrm{d}x-\int_0^{\frac{\pi}{2}}\ln^2(2)\mathrm{d}x.
\end{equation*}
The third integral is $\frac{\pi}{2}\ln^2(2)$ and the second integral is $-\frac{\pi}{2}\ln(2)$ . For the first one, use
\begin{equation*}
\ln^2(2\cos x)=x^2+2\sum_{n=1}^\infty (-1)^n\frac{H_{n-1}}{n}\cos(2nx),
\end{equation*}
to have
\begin{gather*}
\int_0^{\frac{\pi}{2}}\ln^2(2\cos x)\mathrm{d}x=\int_0^{\frac{\pi}{2}}x^2\mathrm{d}x+2\sum_{n=1}^\infty (-1)^n\frac{H_{n-1}}{n}\int_0^{\frac{\pi}{2}}\cos(2nx)\mathrm{d}x\\
=\frac{\pi^3}{24}+2\sum_{n=1}^\infty (-1)^n\frac{H_{n-1}}{n}\cdot\frac{\sin(2nx)}{2n}\bigg|_0^{\frac{\pi}{2}}\\
=\frac{\pi^3}{24}+2\sum_{n=1}^\infty (-1)^n\frac{H_{n-1}}{n}\cdot\frac{\sin(n\pi)}{2n}\\
\{\text{the sum evaluates to $0$, since $\sin(n\pi)=0$ for integer $n$}\}\\
=\frac{\pi^3}{24}.
\end{gather*}
Combining the three integrals gives
\begin{equation}
\int_0^{\frac{\pi}{2}} \ln^2(\cos x)\mathrm{d}x=\frac{\pi}{2}\ln^2(2)+\frac{\pi^3}{24}.\label{ln^2sinx}
\end{equation}
Evaluating $\int_0^{\frac{\pi}{4}} \ln^2(\cos x)\mathrm{d}x:$ Similarly
\begin{equation*}
\int_0^{\frac{\pi}{4}} \ln^2(\cos x)\mathrm{d}x=\int_0^{\frac{\pi}{4}}\ln^2(2\cos x)\mathrm{d}x-2\ln(2)\int_0^{\frac{\pi}{4}}\ln(\cos x)\mathrm{d}x-\int_0^{\frac{\pi}{4}}\ln^2(2)\mathrm{d}x.
\end{equation*}
The third integral is $\frac{\pi}{4}\ln^2(2)$ and the second integral is $\frac12G-\frac{\pi}{2}\ln(2)$ . For the first one,
\begin{gather*}
\int_0^{\frac{\pi}{4}}\ln^2(2\cos x)\mathrm{d}x=\int_0^{\frac{\pi}{4}}x^2\mathrm{d}x+2\sum_{n=1}^\infty (-1)^n\frac{H_{n-1}}{n}\int_0^{\frac{\pi}{4}}\cos(2nx)\mathrm{d}x\\
=\frac{\pi^3}{192}+2\sum_{n=1}^\infty (-1)^n\frac{H_{n-1}}{n}\cdot\frac{\sin(n\pi/2)}{2n}\\
\left\{\text{note that $\sum_{n=1}^\infty a_n\sin(n\pi/2)=\sum_{n=0}^\infty (-1)^{n} a_{2n+1}=\Im\sum_{n=1}^\infty i^{n} a_{n}$}\right\}\\
=\frac{\pi^3}{192}-\Im\sum_{n=1}^\infty i^n\frac{H_{n-1}}{n^2}\\
=\frac{\pi^3}{192}-\Im\{\zeta(3)-\operatorname{Li}_3(1-i)+\ln(1-i)\operatorname{Li}_2(1-i)+\frac12\ln(i)\ln^2(1-i)\}\\
=\frac{7\pi^3}{192}+\frac{\pi}{16}\ln^2(2)+\frac{1}{2}G\ln(2)+\Im\,\operatorname{Li}_3(1-i).
\end{gather*}
where we used the generating function
$$\sum_{n=1}^\infty\frac{H_{n-1}}{n^2}x^{n}=\zeta(3)-\operatorname{Li}_3(1-x)+\ln(1-x)\operatorname{Li}_2(1-x)+\frac12\ln(x)\ln^2(1-x).$$
Combine the three integrals,
$$\int_0^{\frac{\pi}{4}}\ln^2(\cos x)\mathrm{d}x=\frac{7\pi^3}{192}+\frac{5\pi}{16}\ln^2(2)-\frac{1}{2}G\ln(2)+\Im\,\operatorname{Li}_3(1-i).$$
$$\pi^3\text{Li}_4\left(\frac12\right)-\frac{59\pi^7}{6720}-\frac{\pi^5}{24}\ln^2(2)+\frac{\pi^3}{24}\ln^4(2)+\frac{7\pi^3}{8}\ln(2)\zeta(3)-\frac{3\pi}{4}\zeta^2(3)$$
– Ali Shadhar Jan 15 '23 at 10:10