We know that every complex $n \times n$ Hermitian Matrix is unitarily diagonizable. Since A is Hermitian $(A^*=A)$ we can unitarily diagonalize it with following steps:
- Find Eigenvalues and corresponding Eigenvectors of A:
\begin{align}
&\lambda_1=1 \qquad &{}_{1}\vec{v}_1 =\begin{pmatrix}0\\i\\1\\0\end{pmatrix} \qquad &{}_{2}\vec{v}_1 =\begin{pmatrix}1\\0\\0\\i\end{pmatrix} \\\\
&\lambda_2=-3 \quad &{}_{1}\vec{v}_2 =\begin{pmatrix}0\\1\\i\\0\end{pmatrix} \qquad &{}_{2}\vec{v}_2 =\begin{pmatrix}i\\0\\0\\1\end{pmatrix}
\end{align}
- Normalize the Eigenvectors:
\begin{align}
{}_{1}\vec{w}_1 = \frac{{}_{1}\vec{v}_1}{||{}_{1}\vec{v}_1||}=\frac{1}{\sqrt{2}}\begin{pmatrix}0\\i\\1\\0\end{pmatrix}
\qquad
{}_{2}\vec{w}_1 = \frac{{}_{2}\vec{v}_1}{||{}_{2}\vec{v}_1||}=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\0\\0\\i\end{pmatrix}
\\\\
{}_{1}\vec{w}_2 = \frac{{}_{1}\vec{v}_2}{||{}_{1}\vec{v}_2||}=\frac{1}{\sqrt{2}}\begin{pmatrix}0\\1\\i\\0\end{pmatrix}
\qquad
{}_{2}\vec{w}_2 = \frac{{}_{2}\vec{v}_2}{||{}_{2}\vec{v}_2||}=\frac{1}{\sqrt{2}}\begin{pmatrix}i\\0\\0\\1\end{pmatrix}
\end{align}
- Plug the normalized vectors into a square matrix:
\begin{equation}
S = ({}_{1}\vec{w}_1\,\,,\,\,{}_{1}\vec{w}_2\,\,,\,\,{}_{2}\vec{w}_1\,\,,\,\,{}_{2}\vec{w}_2) = \frac{1}{\sqrt{2}}\begin{pmatrix}0&1&0&i\\i&0&1&0\\1&0&i&0\\0&i&0&1\end{pmatrix}
\end{equation}
- Calculate the Inverse or Conjugate Transpose (easier) of $S$:
\begin{equation}
S^{-1}=S^{*}= \frac{1}{\sqrt{2}}\begin{pmatrix}0&-i&1&0\\1&0&0&-i\\0&1&-i&0\\-i&0&0&1\end{pmatrix}
\end{equation}
- Check if $S^*AS$ is actually a diagonal matrix.
Note that the order of the normalized Eigenvectors in S doesn't change that S is unitary; it only changes the order of the Eigenvalues in the diagonal Matrix:
\begin{align}
S = ({}_{1}\vec{w}_1\,\,,\,\,{}_{1}\vec{w}_2\,\,,\,\,{}_{2}\vec{w}_1\,\,,\,\,{}_{2}\vec{w}_2)\qquad &\implies\qquad S^*AS=\text{diag}(1,1,-3,-3) \\\\
S = ({}_{2}\vec{w}_2\,\,,\,\,{}_{1}\vec{w}_2\,\,,\,\,{}_{2}\vec{w}_1\,\,,\,\,{}_{1}\vec{w}_1)\qquad &\implies\qquad S^*AS=\text{diag}(-3,1,-3,1) \\\\
S = ({}_{2}\vec{w}_2\,\,,\,\,{}_{2}\vec{w}_1\,\,,\,\,{}_{1}\vec{w}_2\,\,,\,\,{}_{1}\vec{w}_1)\qquad &\implies\qquad S^*AS=\text{diag}(-3,-3,1,1) \\\\
&\,\,\,\cdots
\end{align}