2

I am trying to find all integers $m$ such that $m$ is relatively prime to 30, and $m=6x^2+5y^2$ for some integers $x,y$. Note that we must have: $y$ is odd, $(y,3)=1=(x,5)$. Using these conditions, I was able to show that $m=11$ or $29$ mod $30$. So I was first trying to handle the case $m=11$ mod 30. Note that $11=6\cdot1^2+5\cdot1^2$, but $41$ is not of the form $6x^2+5y^2$. So I was wondering, for which $n$ do we have $30n+11=6x^2+5y^2$? Also, for such $n$, can we obtain $x$ and $y$ satisfying $30n+11=6x^2+5y^2$?

blancket
  • 2,090

2 Answers2

4

The values to look for are mod 120, specifically $11, 29, 59, 101 \pmod{120}.$ There is a fairly clean theory about primes that are represented by a binary form. Since the class number $h(\mathbb Z[\sqrt{-30}]) = 4$ but there is one form in each genus, the primes $p = 5 x^2 + 6 y^2 $ are described precisely by congruences.

Other than the primes $2,3,5,$ the primes such that $(-120|p) = 1$ are represented as such:

$$ \begin{array}{ccccccc} 1. & 1,&31,&49,&79, & \pmod{120}& :: \; \; x^2 + 30 y^2 \\ 2. & 17,&23,&47,&113, & \pmod{120}& :: \; \; 2x^2 + 15 y^2 \\ 3. & 13,&37,&43,&67, & \pmod{120}& :: \; \; 3x^2 + 10 y^2 \\ 6. & 11,&29,&59,&101, & \pmod{120}& :: \; \; 5x^2 + 6 y^2 \\ \end{array} $$

Products of such primes are represented by one of the four forms, specified by Gauss composition. For example, $11 \cdot 29 = 319 = 17^2 + 30 \cdot 1^2 = 7^2 + 30 \cdot 3^2.$ Suppose we call the forms 1,2,3,6, where the last one is for $6 y^2 + 5 x^2.$ For a product of such "good" primes, write each one with a code 1,2,3,6. Then multiply, table $1^2 = 2^2 = 3^2 = 6^2 = 1.$ Next $2 \cdot 3 = 6$ and $2 \cdot 6 = 3.$ Finally $3 \cdot 6 = 2.$ Well, here is a $2 \cdot 3 = 6.$ As in $17 \cdot 13 = 221 = 5 \cdot 5^2 + 6 \cdot 4^2 = 5 \cdot 1^2 + 6 \cdot 6^2 $

all values  mod 120
       0       5       6      11      14      20      21      24      26      29   
      30      35      36      44      45      50      51      54      56      59   
      60      66      69      74      75      80      84      86      90      96    
      99     101     104     110     114     116

prime to 120: 11, 29, 59, 101

primes

   5      11      29      59     101     131     149     179     251     269
 389     419     461     491     509     659     701     821     941     971
1019    1061    1091    1109    1181    1229    1259    1301    1451    1499
1571    1619    1709    1811    1901    1931    1949    1979    2069    2099
2141    2309    2339    2381    2411    2459    2531    2549    2579    2621
2699    2741    2789    2819    2861    2909    2939    3011    3221    3251
3299    3371    3389    3461    3491    3539    3581    3659    3701    3779
3821    3851    3989    4019    4091    4139    4211    4229    4259    4349
4421    4451    4691    4931    5021    5051    5099    5171    5189    5261

$$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $$

 form  1     x^2 + 30 y^2
       0       1       4       9      16      25      30      31      34      36
      39      46      49      55      64      66      79      81      94     100
     111     120     121     124     129     130     136     144     145     151
     156     169     174     184     196     199     201     220     225     226
     241     255     256     264     270     271     274     279     286     289
     295     306     316     319     324     334     345     351     354     361
     370     376     391     400     409     414     430     439     441     444
     466     471     480     481     484     489     495     496     505     514
     516     520     526     529     544     559     561     576     580     594
     601     604     606     624     625     631     649     655     670     676

form 2 2 x^2 + 15 y^2 0 2 8 15 17 18 23 32 33 47 50 60 62 65 68 72 78 87 92 98 110 113 128 132 135 137 143 153 158 162 167 177 185 188 200 207 215 222 233 240 242 248 257 258 260 263 272 288 290 297 302 303 312 335 338 348 353 368 375 377 383 392 393 398 402 407 423 425 440 447 450 452 465 473 482 503 510 512 527 528 537 540 542 548 558 572 575 578 585 590 593 612 617 632 638 647 648 663 668 690

form 3 3 x^2 + 10 y^2 0 3 10 12 13 22 27 37 40 43 48 52 58 67 75 85 88 90 93 102 108 115 117 118 138 147 148 157 160 163 165 172 187 192 198 202 208 232 235 237 243 250 253 262 268 277 282 283 298 300 307 310 325 333 340 352 358 360 363 372 373 387 390 397 403 408 432 435 442 453 460 468 472 490 493 502 507 517 522 523 538 547 550 552 565 588 592 597 598 603 613 628 637 640 643 652 660 667 675 678

form 6 5 x^2 + 6 y^2 0 5 6 11 20 24 26 29 44 45 51 54 59 69 74 80 86 96 99 101 104 116 125 131 134 141 149 150 155 170 176 179 180 186 195 204 216 221 230 234 236 245 251 261 269 275 276 294 296 299 314 320 326 330 339 341 344 374 384 389 395 396 404 405 411 416 419 429 459 461 464 470 474 486 491 500 501 506 509 524 531 536 539 554 555 564 566 596 600 605 611 614 620 621 629 645 650 659 666 680

$$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $$

Oscar Lanzi
  • 39,403
Will Jagy
  • 139,541
  • In this answer I explore the factorization characteristics on class 4 domains when the class group is specifically Klein-four. Would this result be connected with that property of $\mathbb Z>\sqrt{-30}]$? – Oscar Lanzi Jan 16 '23 at 04:47
  • @OscarLanzi Hi. The unusually clean setup is due to having one class per genus, for positive forms this is Euler's Idoneal Numbers. https://en.wikipedia.org/wiki/Idoneal_number I will see if I can come up with one class per genus but eight genera, this might require indefinite forms. Take a few minute at least. Quicker than expected, idoneal number 105, class number eight, all forms square to the identity, 420: < 1, 0, 105> 420: < 2, 2, 53> 420: < 3, 0, 35> 420: < 5, 0, 21> 420: < 6, 6, 19> 420: < 7, 0, 15> 420: < 10, 10, 13> 420: < 11, 8, 11> – Will Jagy Jan 16 '23 at 04:59
  • Alright, 16 genera, one class per genus, Discriminant -5460 h : 16 Squares : 1 cubes : 16 Fourths : 1 5460: < 1, 0, 1365> 5460: < 2, 2, 683> 5460: < 3, 0, 455> 5460: < 5, 0, 273> 5460: < 6, 6, 229> 5460: < 7, 0, 195> 5460: < 10, 10, 139> 5460: < 13, 0, 105> 5460: < 14, 14, 101> 5460: < 15, 0, 91> 5460: < 21, 0, 65> 5460: < 26, 26, 59> 5460: < 30, 30, 53> 5460: < 35, 0, 39> 5460: < 37, 4, 37> 5460: < 42, 42, 43> – Will Jagy Jan 16 '23 at 05:09
  • OEIS A000926 reports that the class group for the relevant discriminants is indeed $(\mathbb Z/2\mathbb Z)^n$, which is the Klein four-group for $\mathbb Z[\sqrt{-30}] (n=2)$. – Oscar Lanzi Jan 16 '23 at 15:01
  • I made your class number rendering more precise (giving the ring, not just the discriminant which may apply to other rings). Feel free to roll back if you want. – Oscar Lanzi Jan 22 '23 at 22:56
0

if n>0, then left hand side is positive, and 30n+11 chooses an ellipse from right-hand side which contains an ellipse for each value in $\{ (x,y) | f(n,x,y)=g(n,x,y), (n,x,y) \in (Z,Z,Z) \}$ where $f(n,x,y)=30n+1$ and $g(n,x,y)=6x²+5y²$. After you realize that it's just an ellipse for positive values of the left hand side, then the next step is to realize that the integers are a grid that needs to intersect the ellipse.

tp1
  • 660