I know that the limit $\lim_{x \rightarrow \infty} (1 + \frac{1}{x})^x$ equals $e$. I tried to experiment with ways to prove this because the proof in my textbook was a little too complex for me, and I proved it this way:
We'll look at the limit $\lim_{x \rightarrow \infty} \ln((1 + \frac{1}{x})^x)$. Simplifying this (From logarithm properties), we get $\lim_{x \rightarrow \infty} x \ln(1 + \frac{1}{x})$. Now, $\lim_{x \rightarrow \infty} x = \infty$ (This is a known limit in my textbook), and $\lim_{x \rightarrow \infty} \ln(1 + \frac{1}{x}) = (\text{continuity of $\ln$ and $1 + \frac{1}{x}$}) \ln(\lim_{x \rightarrow \infty} 1 + \frac{1}{x}) = \ln(1 + \frac{1}{\infty}) = \ln(1 + 0)= \ln(1) = 0$. Now, we have the indeterminate form $0 \cdot \infty$, so we can calculate $\lim_{x \rightarrow \infty} \frac{\ln(1 + \frac{1}{x})}{\frac{1}{x}}$. This is the indeterminate form $\frac{0}{0}$, so we'll use L'hopital's rule: taking the derivative of the numerator and the denominator, we have $\lim_{x \rightarrow \infty} \frac{\frac{1}{1 + \frac{1}{x}} \cdot \frac{-1}{x^2}}{\frac{-1}{x^2}} = \lim_{x \rightarrow \infty} \frac{\frac{-1}{x^2 + x}}{\frac{-1}{x^2}} = \lim_{x \rightarrow \infty} \frac{-x^2}{-x^2 - x} = \lim_{x \rightarrow \infty} \frac{-1}{-1 - \frac{1}{x}} = 1$. So $\lim_{x \rightarrow \infty} \ln((1 + \frac{1}{x})^x) = \text{($\ln$ is continuous)} \ln(\lim_{x \rightarrow \infty} (1 + \frac{1}{x})^x) = 1$, and therefore $\lim_{x \rightarrow \infty} (1 + \frac{1}{x})^x = e$. $\blacksquare$
Does this look correct? Thanks!