0

I have to prove this equality using index notation (Einstein summation), but I don't know how to proceed from here:

$\nabla(A \cdot B)=A \times (\nabla \times B)+(A \cdot \nabla)B+B \times (\nabla \times A)+(B \cdot \nabla)A$

$\partial_i(a_j b_j)$ -> Product rule

$(\partial_i a_j)b_j+a_j(\partial_i b_j)$ -> What should I do here?

Thank you! All the best.

1 Answers1

0

Observe that \begin{align*} &\mathbf A \times (\boldsymbol \nabla \times \mathbf B) + (\mathbf A \boldsymbol \cdot \boldsymbol \nabla)\mathbf B + \mathbf B \times(\boldsymbol \nabla \times \mathbf A) + (\mathbf B \boldsymbol \cdot \boldsymbol \nabla)\mathbf A \\ ={}&\varepsilon_{ijk}A_i\left[\boldsymbol \nabla \times \mathbf B\right]_j \mathbf e_k + A_i \partial_i B_k \mathbf e_k + \varepsilon_{ijk} B_i \left[\boldsymbol \nabla \times \mathbf A \right]_j \mathbf e_k + B_i \partial_i A_k \mathbf e_k \tag{1}\\ ={}& \varepsilon_{jki} \varepsilon_{jpq} A_i \partial_p B_q \mathbf e_k + A_i \partial_i B_k \mathbf e_k + \varepsilon_{jki} \varepsilon_{jpq} B_i \partial_p A_q \mathbf e_k + B_i \partial_i A_k \mathbf e_k \tag{2}\\ ={}& \left(\delta_{kp} \delta_{iq} - \delta_{kq} \delta_{ip} \right) \left(A_i \partial_p B_q \mathbf e_k + B_i \partial_p A_q \mathbf e_k\right) + A_i \partial_i B_k \mathbf e_k + B_i \partial_i A_k \mathbf e_k \tag{3}\\ ={}& A_i \partial_k B_i \mathbf e_k - A_i \partial_i B_k \mathbf e_k + B_i \partial_k A_i \mathbf e_k - B_i \partial_i A_k \mathbf e_k + A_i \partial_i B_k \mathbf e_k + B_i \partial_i A_k \mathbf e_k \tag{4}\\ ={}& A_i \frac{\partial B_i}{\partial x_k} \mathbf e_k + B_i \frac{\partial A_i}{\partial x_k} \mathbf e_k \tag{5} \\ ={}& \partial_k (A_i B_i) \mathbf e_k \tag{6} \\ ={}& \boldsymbol \nabla(\mathbf A \boldsymbol \cdot \mathbf B), \tag{7} \end{align*} where

  • $(1)$ follows since $\mathbf F \times \mathbf G = \epsilon_{ijk} F_i G_j \mathbf e_k$ and $(\mathbf F \boldsymbol \cdot \boldsymbol \nabla) = F_i \partial_i$;
  • $(2)$ follows since $\boldsymbol \nabla \times \mathbf F = \varepsilon_{ijk}\partial_i F_j \mathbf e_k$;
  • $(3)$ follows using the $\varepsilon$-contraction identity $\varepsilon_{ijk} \varepsilon_{ipq} = \delta_{jp} \delta_{kq} - \delta_{jq} \delta_{kp}$;
  • $(4)$ follows using the $\delta$-contraction identity $\delta_{ij}a_j = a_i$;
  • $(5)$ follows by cancelling equal terms;
  • $(6)$ follows by the product rule;
  • $(7)$ follows since $\boldsymbol \nabla \phi = \partial_i\phi \mathbf e_i$.
kipf
  • 2,357