So I need to find the Surface area of $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ about $x,y$ axis.
For $x-$axis, I found that
$$y=\frac{b}{a}\sqrt{a^2-x^2}$$
Then
$$y'=-\frac{bx}{a\sqrt{a^2-x^2}}.$$
Then
$$(y')^2=\frac{b^2x^2}{a^2(a^2-x^2)}.$$
Then $$1+(y')^2=\frac{x^2b^2+a^2(a^2-x^2)}{a^2(a^2-x^2)}$$
Then according to $S= 2\pi \int_a^b f(x)\sqrt{1+(f'(x))^2}dx$ we have
$$S = 2 \pi \int_{-a}^a \frac{b}{a^2}\sqrt{x^2b^2+a^2(a^2-x^2)} dx.$$
where am I going wrong? And for the $y-$axis do we just solve for $x$ and integrate $-b$ to $b$?