We know that there is an isomorphism $\mathsf{SU}(2) \otimes \mathsf{SU}(2) \to \mathsf{SO}(4)$ given explicitly by $M \mapsto Q^\dagger M Q$ where $$ Q=\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 0 & i \\ 0 & i & 1 & 0 \\ 0 & i & -1 & 0 \\ 1 & 0 & 0 & -i \end{bmatrix}. $$ Note that $Q \in \mathsf{U}(4)$.
Is there an isomorphism $\mathsf{SU}(2) \otimes \mathsf{SU}(2) \otimes \mathsf{SU}(2) \to G$, where $G$ is a subgroup of $\mathsf{SO}(8)$? If so, what is $G$? Also, is there a unitary $Q \in \mathsf{U}(8)$ such that the isomorphism is given by conjugation $M \mapsto Q^\dagger M Q$? If so, what is $Q$ explicitly as a matrix?