For $ q \in \mathbb{R} $ and $ q > 0 $,
by Archimedian principle,
$ \; \exists \; k \in \mathbb{N} $ such that $ k > q $
Then, for $ n > k $,
$$ q \cdot q \cdot q \dots q < k \cdot (k+1) \cdot (k+2) \dots (n-1) \\
\implies q^{n-k} < \frac{(n-1)!}{(k-1)!} \\
\implies \frac{n!}{q^n} > \frac{n!}{q^k} \cdot \frac{(k-1)!}{(n-1)!} = \frac{(k-1)!}{q^k} \cdot n $$
Now, for any $ M \in \mathbb{R} $,
by Archimedian principle,
$$ \exists \; n_0 \in \mathbb{N} \; \text{such that} \; n_0 > M \cdot \frac{q^k}{(k-1)!} $$
Then,
$$ \forall n > n_0, \; \frac{n!}{q^n} > \frac{(k-1)!}{q^k} \cdot n > \frac{(k-1)!}{q^k} \cdot n_0 > M $$
Therefore, by definition of limit,
$$ \lim_{n \to \infty} \frac{n!}{q^n} = \infty $$
Moreover, this is not only true for $ q > 0 $, but for any $ q \in \mathbb{R} $ which can be proven in a similar manner. Just note that $ |q| > q $, so $ \frac{n!}{q^n} > \frac{n!}{|q|^n} $ and then proceed with the above method.