Evaluate the limit: $\lim_{n\to \infty} \frac{\left[(n+1)(n+2)\ldots(n+n)\right]^{1/n}}{n}$
I can write $$\lim_{n\to \infty} \frac{[(n+1)(n+2)\ldots(n+n)]^{1/n}}{n}$$ $$=\lim_{n\to \infty} \left(1+\frac{1}{n}\right)^{1/n}\left(1+\frac{2}{n}\right)^{1/n}\ldots \left(1+\frac{n}{n}\right)^{1/n}$$$$=e\times \sqrt{e}\times \sqrt[3]{e}\times \ldots \times \sqrt[n-1]{e}\times 1$$.
I don't know how to evaluate the final product.