So I saw this differential equation $$x^2y^{\prime \prime} - xy^{\prime} + y = \ln(x)$$ let $x=e^t$ or $t = \ln x$ $$\frac{dy}{dx} =\frac{dy}{dt}\frac{dt}{dx}= \frac{1}{x}\frac{dy}{dt}$$ $$\frac{d^2y}{dx^2} = \frac{1}{x}\frac{d}{dx}\left(\frac{dy}{dt}\right) + \frac{dy}{dt}\left(-\frac{1}{x^2}\right)$$ $$\frac{d^2y}{dx^2} = \frac{1}{x}\left(\frac{d^2y}{dt^2}\frac{1}{x}\right) + \frac{dy}{dt}\left(-\frac{1}{x^2}\right)$$
so here how did we derive $\frac{d}{dx}(\frac{dy}{dt}) = \frac{1}{x}\frac{d^2y}{dt^2}$, even the textbook I used this example from has no derivation in it