Here we have an indeterminacy:
$\lim_{h \to 0}\dfrac{e^{-x}- e^{-x-h}}{h} = \dfrac{e^{-x}- e^{-x-0}}{0} = \dfrac{0}{0}.$
So we can use L'Hopital's rule differentiating each function: $\dfrac{d}{dh} \left(e^{-x} - e^{-x-h}\right) = \dfrac{d}{dh} (e^{-x}) - \dfrac{d}{dh} (e^{-x-h}) = 0 + e^{-x-h} = e^{-x-h}.$
Is it possible to get the same result without using differentiation? If possible, could you demonstrate?