Since we are squaring all the sine functions, we can extend the limit from $0$ to $2 \pi$.
$$I = \frac{1}{2} \int_0^{2\pi} \left(\frac{\sin{2x}\sin{3x}\sin{5x}\sin{30x}}{\sin{x}\sin{6x}\sin{10x}\sin{15x}}\right)^2 dx$$
Using $\sin{2y} = 2 \sin{y}\cos{y}$,
$$I = \frac{1}{2} \int_0^{2\pi} \left(\frac{\cos{x}\cos{15x}}{\cos{3x}\cos{5x}}\right)^2 dx $$
Using $\frac{\cos{3y}}{\cos{y}} = 4 \cos^2 y - 3 = 2 \cos{2y} -1$,
$$I = \frac{1}{2} \int_0^{2\pi} \left(\frac{2\cos{10x}-1}{2\cos{2x}-1}\right)^2 dx $$
$$ = \frac{1}{2} \int_0^{2\pi} \left(\frac{e^{10 i x} + e^{-10 i x}-1}{e^{2 i x} + e^{-2 i x}-1}\right)^2 dx $$
Now, substitute $z = e^{i x}$
$$I = \frac{1}{2 i} \oint \left(\frac{z^{10} + z^{-10}-1}{z^{2} + z^{-2}-1}\right)^2 \frac{dz}{z} ,$$ where the contour is over the unit circle, along the anti-clockwise direction.
$$= \frac{1}{2 i} \oint \left(\frac{z^{20} - z^{10}+1}{z^{4} - z^{2}+1}\right)^2 \frac{dz}{z^{17}} $$
Now, let's use the fact that $y^2 - y + 1 =(y + \omega)(y+\omega^2)$, where $\omega$ and $\omega^2$ are the complex cube roots of 1.
Then $$\frac{z^{20} - z^{10}+1}{z^{4} - z^{2}+1} = \frac{(z^{10}+\omega)(z^{10} + \omega^2)}{(z^2+\omega)(z^2 + \omega^2)}$$
Notice that $\omega^5 = \omega^2$, and $(\omega^2)^5 = \omega$.
Using $\frac{a^5 + b^5}{a+b} = a^4 - a^3 b + a^2b^2 - ab^3 + b^4$, we get,
$$\frac{(z^{10}+\omega^2)}{(z^2 + \omega)} = z^8 - \omega z^6+\omega^2 z^4 -z^2+\omega .$$
Then, $$I = \frac{1}{2 i} \oint \left((z^8 - \omega z^6+\omega^2 z^4 -z^2+\omega)
(z^8 - \omega^2 z^6+\omega z^4 -z^2+\omega^2)
\right)^2 \frac{dz}{z^{17}} $$
Just count the powers and keep using the identity $\omega^2 + \omega = -1$ to simplify,
$$= \frac{1}{2 i} \oint \left(z^{16} + z^{14} - z^{10}-z^8-z^6+z^2+1\right)^2 \frac{dz}{z^{17}} $$
(Note: One can also use long division to show $\frac{z^{20} - z^{10}+1}{z^{4} - z^{2}+1} = z^{16} + z^{14} - z^{10}-z^8-z^6+z^2+1$)
The coefficient of $z^{16}$ in $\left(z^{16} + z^{14} - z^{10}-z^8-z^6+z^2+1\right)^2$ is 7.
Finally we use the residue therem, $$I = \frac{1}{2 i} \oint 7 z^{16} \frac{dz}{z^{17}} = \frac{1}{2i} 7 \cdot 2 i \pi = \boxed{7 \pi}$$