Problem :
Let $x,a>0$ then (dis)prove :
$$f(x)=\left(1+x\right)\ln\left(x\right)-\left(\left(x+a\right)\ln\left(\frac{x+a}{2}\right)+\left(x-a\right)\left(1+\frac{\frac{1}{12}\left(x-a\right)^{2}}{\left(x+a\right)^{2}}\right)\right)\leq 0$$
My attempt :
Using this question Prove that $\frac{{x_1}^2+{x_2}^2+\cdots+{x_n}^2}{n}x_1x_2\cdots x_n\le\left(\frac{x_1+x_2+\cdots+x_n}{n}\right)^{n+2}$ we have :
$$g(x)=2^{\frac{3}{4}}\left(x\right)^{\frac{1}{4}}\left(x^2+1\right)^{\frac{1}{4}}-\left(x+1\right)\leq 0 $$
Then and without success I tried to show $0<x\leq 10$:
$$f(x)\leq g(x)$$
Perhaps we can split the problem.
Question :
How to prove or disprove it ?
Reference :
Prove $2(x + y)\ln \frac{x + y}{2} - (x + 1)\ln x - (y + 1)\ln y \ge 0$
Harnack's inequality in the plane R^2
See also Boltzmann's entropy law
Edit 19/02/2022 :
For $a\geq 1\geq x >0$ we have the inequality :
$$r\left(x\right)=b\left(\frac{b}{2}+\frac{1}{cb\left(2\sqrt{x}-b+2\right)^{2}}\right)\cdot2\left(x-1\right)+\frac{\left(1-x\right)^{2}}{6}-\frac{\left(1-x\right)^{3}}{32}\geq \left(x+1\right)\ln\left(x\right)$$
Where : $b=\frac{4}{3},c=-\frac{2}{\left(b-4\right)^{2}\left(b^{2}-2\right)}$
And :
$$r(x)\leq \left(x+a\right)\ln\left(\frac{\left(x+a\right)}{2}\right)+\left(x-a\right)\left(1+\frac{1}{12}\frac{\left(x-a\right)^{2}}{\left(x+a\right)^{2}}\right)$$
Let :
$d(x,y)=\left(x+y\right)\ln\left(\frac{\left(x+y\right)}{2}\right)+\left(x-y\right)\left(1+\frac{1}{12}\frac{\left(x-y\right)^{2}}{\left(x+y\right)^{2}}\right)-r(x)$
Then define :
$$t(x,y)=\frac{d}{dx}\left(\frac{d\left(x^{2},y\right)}{x^{2}+y}\right)$$
Then :
$$t(1/(x+1),y+1)=(-3072x^{14}y^{3}-9216x^{14}y^{2}-9216x^{14}y-3072x^{14}-43979x^{13}y^{3}-133946x^{13}y^{2}-135955x^{13}y-45988x^{13}-291698x^{12}y^{3}-922364x^{12}y^{2}-969634x^{12}y-338968x^{12}-1186833x^{11}y^{3}-3999862x^{11}y^{2}-4443243x^{11}y-1630214x^{11}-3304964x^{10}y^{3}-12227800x^{10}y^{2}-14617996x^{10}y-5695160x^{10}-6653705x^{9}y^{3}-27893214x^{9}y^{2}-36430788x^{9}y-15193288x^{9}-9974034x^{8}y^{3}-48917820x^{8}y^{2}-70589208x^{8}y-31678512x^{8}-11300367x^{7}y^{3}-66863754x^{7}y^{2}-107366388x^{7}y-52021704x^{7}-9729768x^{6}y^{3}-71392560x^{6}y^{2}-127926432x^{6}y-67057728x^{6}-6358044x^{5}y^{3}-59115000x^{5}y^{2}-117970224x^{5}y-66977184x^{5}-3132848x^{4}y^{3}-37309952x^{4}y^{2}-82324480x^{4}y-50639488x^{4}-1150160x^{3}y^{3}-17402480x^{3}y^{2}-41927296x^{3}y-27916288x^{3}-306624x^{2}y^{3}-5679424x^{2}y^{2}-14685696x^{2}y-10551296x^{2}-55040xy^{3}-1164544xy^{2}-3168256xy-2441216x-5120y^{3}-113664y^{2}-319488y-262144)/(144(x+1)^{3}(x+4)^{3}(x^{2}y+x^{2}+2xy+2x+y+2)^{4})\leq 0$$
For the case $x\geq 1\ge a >0$ one can show that :
$$v\left(x\right)=b\left(\frac{b}{2}+\frac{1}{cb\left(2\sqrt{x}-b+2\right)^{2}}\right)\cdot2\left(x-1\right)+\frac{\left(1-x\right)^{2}}{6}+\frac{\frac{1}{4}\left(x-1\right)^{3}}{\left(x+1\right)^{3}}-\left(x+1\right)\ln\left(x\right)\geq 0$$
Now considering :
$$m(x)=f\left(x\right)-v\left(x\right)\geq 0$$
Then define :
$$T(x,a)=\frac{d}{dx}\left(\frac{m\left(x^{2}\right)}{x^{2}+a}\right)$$
Then $x>1>y>0$ $$T(1+x/(x+y),1-y/(x+y))=((20394250x^{20}+528955025x^{19}y+4207383600x^{18}y^{2}+17983502665x^{17}y^{3}+49580654654x^{16}y^{4}+95957785654x^{15}y^{5}+136004398310x^{14}y^{6}+143361431309x^{13}y^{7}+110895037540x^{12}y^{8}+58405263383x^{11}y^{9}+14075272220x^{10}y^{10}-7938105344x^{9}y^{11}-11533507934x^{8}y^{12}-7506291198x^{7}y^{13}-3305576312x^{6}y^{14}-1061515832x^{5}y^{15}-251347968x^{4}y^{16}-43018176x^{3}y^{17}-5054208x^{2}y^{18}-365568xy^{19}-12288y^{20})/(6(x+y)(7x+4y)^{3}(5x^{2}+5xy+y^{2})^{4}(5x^{2}+6xy+2y^{2})^{4}))>0$$