Without complex analysis
This question is best targeted by manipulating trig identities. Nonetheless, there is a suggestion to solving the product using roots of unity in the method below this one.
Observe a similar product: $$\prod_{r = 1}^{89}{\sin{r^\circ}} = \sin{1^\circ} \cdot \sin{2^\circ} \cdot \sin{3^\circ} \cdot \sin{4^\circ} \cdot \dots \cdot \sin{89^\circ} \\ \quad \\ =\sin{1^\circ} \cdot \sin{89^\circ} \cdot \sin{2^\circ} \cdot \sin{88^\circ} \cdot \dots \cdot \sin{45^\circ} \\ \quad \\ =\sin{1^\circ} \cdot \sin{(90 - 1)^\circ} \cdot \sin{2^\circ} \cdot \sin{(90 - 2)^\circ} \cdot \dots \cdot \sin{45^\circ} \\ \quad \\ =\sin{1^\circ} \cdot \cos{1^\circ} \cdot \sin{2^\circ} \cdot \cos{2^\circ} \cdot \dots \cdot \sin{45^\circ} \\ \quad \\ = \frac{1}{2}\sin{2^\circ} \cdot \frac{1}{2}\sin{4^\circ} \cdot \dots \cdot \sin{45^\circ}$$
Now, $$\prod_{r = 1}^{45}{\sin{(2r - 1)^\circ}} = \frac{\prod_{r = 1}^{89}{\sin{r^\circ}}}{\prod_{r = 1}^{45}{\sin{2r^\circ}}}$$
With complex analysis
Due to a very nice Q&A, there is no actual working provided, rather a visualisation of how "unity of roots" maybe employed here.
Observe the following circle with equation $|z| = 1$.

With $z_n = \cos{2n} + i\sin{2n}$, ($180$ total)
we see $|z_0 - z_n| = |1 - \cos{2n} - i\sin{2n}| = \sqrt{\left(1 - \cos{2n}\right)^2 + \sin^2{2n}} = \sqrt{2 - 2\cos{2n}} \\ = \sqrt{2 - 2\left(2\cos^2{2n} - 1\right)} = 2\sin{n}$
Hence,
$$\prod_{r = 1}^{179}{\sin{r^\circ}} = 2^{-89} \cdot |z_0 - z_1| \cdot |z_0 - z_2| \cdot |z_0 - z_3| \cdot |z_0 - z_4| \cdot \dots \cdot |z_0 - z_{179}| \\= \frac{z_0^{180} - 1}{z_0 - 1} = z_0^{179} + z_0^{178} + \dots + 1$$