$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{{\displaystyle #1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\on}[1]{\operatorname{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\sr}[2]{\,\,\,\stackrel{{#1}}{{#2}}\,\,\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\color{#44f}{\on{S}}\pars{n} & \equiv \color{#44f}{\sum_{i\ +\ j\ =\ n}
{3i \choose i\ i\ i}{3j \choose j\ j\ j}} =
\sum_{i = 0}^{\infty}\sum_{j = 0}^{\infty}
{3i \choose i\ i\ i}{3j \choose j\ j\ j}\bracks{z^{n}}z^{i + j}
\\[5mm] & =
\bracks{z^{n}}\bracks{\sum_{i = 0}^{\infty}{3i \choose i\ i\ i}z^{i}}^{2} =
\bracks{z^{n}}\bracks{\sum_{i = 0}^{\infty}{\pars{3i}! \over i!^{3}}z^{i}}^{2}
\\[5mm] & =
\bracks{z^{n}}\bracks{\mbox{}_{2}\!\on{F}_{1}\pars{\left.\begin{array}{c}
\ds{1/3\quad 2/3}
\\
1
\end{array}\right\vert 27z}}^{2}
\\[5mm] & \underline{\ds{It\ doesn't\ seem\ very\ use\!ful\,!!!.}}
\end{align}