In my post, I had proved that $$ \int_0^{\infty} \frac{\ln \left(x^2+a^2\right)}{b^2+x^2} d x=\frac{ \pi}{b} \ln (a+b) \tag*{(*)} $$ To go further, I guess that $$\int_0^{\infty} \frac{\ln \left(x^4+a^4\right)}{b^2+x^2} d x =\frac{\pi}{ |b|} \ln \left(a^2+b^2+|a|| b| \sqrt{2}\right) $$
Proof:
For $a,b>0$,
Using $\ln \left(a^2+b^2\right)=2 Re(\ln (a+b i))$, we can reduce the power $4$ to $2$. $$ \begin{aligned} \int_0^{\infty} \frac{\ln \left(x^4+a^4\right)}{b^2+x^2} d x & = 2\int_{0}^{\infty} \frac {Re\left[\ln \left(x^2+a ^2i\right)\right]}{b^2+x^2} d x \\ & =2 Re\left(\int_0^{\infty} \frac{\ln \left(x^2+\left[\left(\frac{1+i}{\sqrt{2}}\right) a\right]^2\right)}{b^2+x^2} d x\right) \end{aligned} $$ Using (*), we have $$ \begin{aligned}\int_0^{\infty} \frac{\ln \left(x^4+a^4\right)}{b^2+x^2} d x&=2 Re\left[\frac{\pi}{b} \ln \left(\frac{1+i}{\sqrt{2}} a+b\right)\right] \\&=\frac{2 \pi}{b} R e\left[\ln \left(\frac{a}{\sqrt{2}}+b+\frac{a}{\sqrt{2}}i\right)\right] \\&= \boxed{\frac{\pi}{b} \ln \left(a^2+b^2+a b \sqrt{2}\right)}\end{aligned} $$ In general, for any $a, b \in \mathbb{R} \backslash\{0\}$, replacing $a$ and $b$ by $|a|$ and $|b|$ yields
$$\boxed{\int_0^{\infty} \frac{\ln \left(x^4+a^4\right)}{b^2+x^2} d x =\frac{\pi}{ |b|} \ln \left(a^2+b^2+|a|| b| \sqrt{2}\right) }$$
For example, $$ \int_0^{\infty} \frac{\ln \left(x^4+16\right)}{9+x^2} d x= \frac{\pi}{3} \ln (13+6 \sqrt{2}) $$
Comments and alternative methods are highly appreciated.
I'm probably incorrect about those points though: the rest of it was really intuitive and easy to understand.
– Lambda Feb 24 '23 at 04:13