We will use the multiplicative decompositions
$$
\mathbf Q_p^\times = p^\mathbf Z \times \mu_{p-1} \times (1+p\mathbf Z_p)
$$
for $p > 2$ and
$$
\mathbf Q_2^\times = 2^\mathbf Z \times \mu_2 \times (1+4\mathbf Z_2).
$$
It tells us for $k \geq 1$ that
$$
{\mathbf Q_p^\times}^k = p^{k\mathbf Z} \times \mu_{p-1}^k \times (1+p\mathbf Z_p)^k
$$
for $p > 2$ and
$$
{\mathbf Q_2^\times}^k = 2^{k\mathbf Z} \times \mu_2^k \times (1+4\mathbf Z_2)^k.
$$
Therefore
$$
\mathbf Q_p^\times/{\mathbf Q_p^\times}^k \cong \mathbf Z/{k\mathbf Z} \times \mu_{p-1}/\mu_{p-1}^k \times (1+p\mathbf Z_p)/(1+p\mathbf Z_p)^k
$$
for $p > 2$ and
$$
\mathbf Q_2^\times/{\mathbf Q_2^\times}^k \cong \mathbf Z/{k\mathbf Z} \times \mu_{2}/\mu_{2}^k \times (1+4\mathbf Z_2)/(1+4\mathbf Z_2)^k
$$
Since $\mu_{p-1}$ is cyclic of order $p-1$ and $\mu_2$ is cyclic of order $2$, $\mu_{p-1}/\mu_{p-1}^k = \mu_{p-1}/\mu_{(p-1)/(p-1,k)}$, so
its order is $(p-1)/((p-1)/(p-1,k)) = (p-1,k)$. Similarly, $\mu_{2}/\mu_{2}^k$ has order $(2,k)$, which of course is also easy to check directly (taking cases if $k$ is even or odd).
Therefore
$$
[\mathbf Q_p^\times:{\mathbf Q_p^\times}^k] = k(p-1,k)[(1+p\mathbf Z_p):(1+p\mathbf Z_p)^k]
$$
for $p > 2$ and
$$
[\mathbf Q_2^\times:{\mathbf Q_2^\times}^k] = k(2,k)[(1+4\mathbf Z_2):(1+4\mathbf Z_2)^k].
$$
To work out the indices of the $1$-units, we use the $p$-adic logarithm to make things additive: for $p > 2$, the $p$-adic log is a topological group isomorphism (even an isometry) $1+p\mathbf Z_p \to p\mathbf Z_p$. Composition with division by $p$ shows $1+p\mathbf Z_p \to \mathbf Z_p$ as groups, so
$$
[(1+p\mathbf Z_p):(1+p\mathbf Z_p)^k] = [\mathbf Z_p:k\mathbf Z_p].
$$
Writing $k = p^{v_p(k)}u$ with $u \in \mathbf Z_p^\times$, so $k\mathbf Z_p = p^{v_p(k)}\mathbf Z_p$, we get
$$
[\mathbf Z_p:k\mathbf Z_p] = [\mathbf Z_p:p^{v_p(k)}\mathbf Z_p] = p^{v_p(k)}
$$
when $p > 2$. Similarly, since the $2$-adic logarithm is a group isomorphism $1+4\mathbf Z_2 \to 4\mathbf Z_2$,
$$
[(1+4\mathbf Z_2):(1+4\mathbf Z_2)^k] = [\mathbf Z_2:k\mathbf Z_2] = 2^{v_2(k)}
$$
where $k = 2^{v_2(k)}u$ where $u \in \mathbf Z_2^\times$.
Thus we finally get the index formulas
$$
[\mathbf Q_p^\times:{\mathbf Q_p^\times}^k] = k(p-1,k)p^{v_p(k)}
$$
for $p > 2$ and
$$
[\mathbf Q_2^\times:{\mathbf Q_2^\times}^k] = k(2,k)2^{v_2(k)}.
$$
The difference between these formulas for $p > 2$ and $p = 2$ is that when $p > 2$ the middle factor is $(p-1,k)$, while when $p = 2$ the middle factor is $(2,k)$, not $(2-1,k) = 1$.
For a finite extension $F$ of $\mathbf Q_p$, Lang's Algebraic Number Theory has a formula for $[F^\times:{F^\times}^k]$ in the chapter on completions. In the second edition it is Proposition $6$ of Chapter II, Section 3:
$$
[F^\times:{F^\times}^k] = k|\mu_k(F)|p^{dv_p(k)},
$$
where $d = [F:\mathbf Q_p]$ and $\mu_m(F)$ is the group of $m$th roots of unity in $F$. This is consistent with the above formulas when $F = \mathbf Q_p$, in which case $d = 1$.