Let $X, Y$ be non-empty sets, $\mathcal A$ a $\sigma$-algebra on $X$ and $f:X\to Y$ a mapping.
Prove that $\mathcal B:=\{B\subseteq Y : f^{−1}(B)\in\mathcal A\}$ is a $\sigma$-algebra on $Y$.
$ f^{-1}(Y)=X \in \mathcal A\implies Y\in \mathcal B$
Let $B\subseteq Y$,
$f^{-1}(B)^c=f^{-1}(B^c)$,
then $x\in f^{-1}(B)^c \iff x\notin f^{-1}(B) \iff f(x)\notin (B)\iff f(x)\in B^c\iff x\in f^{-1}(B^c)$$\bigcup\limits^\infty_{n=1}(B_n)\in \mathcal B$
$(\forall n\in N):B_n\in \mathcal B \implies (\forall n\in N): f^{-1}(B)\in \mathcal A\implies \bigcup^\infty_{n=1}f^{-1}(B_n)=f^{-1}\bigcup^\infty_{n=1}(B_n)\in \mathcal A\implies \bigcup^\infty_{n=1}(B_n)\in \mathcal B$
I would appreciate if anyone can tell me if this proof is correct, if not, to point out my mistakes. Thanks in advance!
EDIT Can anyone also recommend similar exercises? I want to practice proving sigma algebras.