I have the following problem: Setting, for $\lambda>0$, $x_\lambda\in\mathbb{R}^d$, $$ (g_\lambda u)(x):=\lambda^{-\frac{d-2}{2}}u\left(\frac{x-x_\lambda}{\lambda}\right)\quad e \quad [(g_\lambda)^{-1}u](x):=\lambda^{\frac{d-2}{2}}u(\lambda x+x_\lambda). $$
Show that $\Vert g_\lambda u\Vert_{\dot{H}^1}=\Vert u\Vert_{\dot{H}^1}=\Vert (g_\lambda)^{-1}u\Vert_{\dot{H}^1}$.
But when I use the change of variables $y=\frac{x-x_\lambda}{\lambda}$, I got
$$ \Vert g_\lambda u\Vert_{\dot{H}_x^1}= \int_{\mathbb{R}^d}|\nabla (g_\lambda u)|^2dx=\int_{\mathbb{R}^d}\left|\nabla\left[\lambda^{-\frac{d-2}{2}}u\left(\frac{x-x_\lambda}{\lambda}\right)\right]\right|^2dx$$$$=\lambda^{-(d-2)}\lambda^d\int_{\mathbb{R}^d}|\nabla u(y)|^2dy=\lambda^2\Vert u\Vert_{\dot{H}^1} $$
What am I doing wrong?