Here is an alternate and probably over-the-top method of evaluating this integral using complex analysis.
Let $I$ be the integral in question. Note that $\displaystyle \int_{-\infty}^{\infty}\frac{x^{2}e^{-x}}{\left(1+e^{-x}\right)^{2}}dx = \int_{-\infty}^{\infty}\frac{x^{2}e^{x}}{\left(1+e^{x}\right)^{2}}dx$. Let $\displaystyle f(z) = \frac{z^{3}e^{z}}{\left(1+e^{z}\right)^{2}}$. Its set of poles is $\left\{z \in \mathbb{C} : z = \pi i (2n+1)\right\}$ for all $n \in \mathbb{Z}$, but the only pole we will concern ourselves with is $z=\pi i$. Traversing counterclockwise, define a rectangular contour $C := \left\{z \in \mathbb{C} : \Re(z) \in [-R,R] \text{ } \wedge \text{ } \Im(z) \in [0,2\pi]\right\}$ visualized below.

By Cauchy's Residue Theorem, we can rewrite $\displaystyle \oint_{C} f(z)dz$ as
$$2\pi i \operatorname{Res}(f(z), z = i\pi) = \left(\int_{-R}^{R}+\int_{R}^{R+2\pi i}+\int_{R+2\pi i}^{-R+2\pi i}+\int_{-R+2\pi i}^{-R}\right)f(z)dz.$$
We can prove that the integrals over the vertical line segments go to $0$ as $R \to \infty$. (I can type out a proof if someone wants me to.)
We evaluate the residue by transforming $f(z)$ as its Laurent expansion centered at its pole $z=i\pi$ like this:
$$2\pi i \operatorname{Res}\left(\frac{i\pi^{3}}{\left(z-i\pi\right)^{2}}+\frac{3\pi^{2}}{z-i\pi}-\frac{i\pi}{12}\left(36+\pi^{2}\right)-\left(1-\frac{\pi^{2}}{4}\right)\left(z-i\pi\right)+O\left(\left(z-i\pi\right)^{2}\right)\right) = 2\pi i \cdot 3\pi^2.$$
Evaluating $\displaystyle\lim_{R\to\infty}\oint_{C} f(z)dz$, we get
$$
\begin{align}
2\pi i \cdot 3\pi^2 &= \lim_{R\to\infty}\left(\int_{-R}^{R}+\int_{R}^{R+2\pi i}+\int_{R+2\pi i}^{-R+2\pi i}+\int_{-R+2\pi i}^{-R}\right)f(z)dz \\
&= \lim_{R\to\infty}\int_{-R}^{R}f(z)dz + 0 + \lim_{R\to\infty}\int_{R+2\pi i}^{-R+2\pi i}f(z)dz + 0 \\
\lim_{R\to\infty}\int_{-R}^{R}f(z)dz &= 6\pi^3 i + \lim_{R\to\infty}\int_{-R+2\pi i}^{R+2\pi i}f(z)dz \\
&= 6\pi^3 i + \lim_{R\to\infty}\int_{-R}^{R}f(x+2\pi i)d(x + 2\pi i) \\
&= 6\pi^{3}i+\lim_{R\to\infty}\int_{-R}^{R}\frac{\left(x+2\pi i\right)^{3}e^{x+2\pi i}}{\left(1+e^{x+2\pi i}\right)^{2}}dx. \\
\end{align}
$$
That integral on the right side is
$$\int_{-R}^{R}\frac{x^{3}e^{x}}{\left(1+e^{x}\right)^{2}}dx+6\pi i\int_{-R}^{R}\frac{x^{2}e^{x}}{\left(1+e^{x}\right)^{2}}dx-12\pi^{2}\int_{-R}^{R}\frac{xe^{x}}{\left(1+e^{x}\right)^{2}}dx-8\pi^{3}i\int_{-R}^{R}\frac{e^{x}}{\left(1+e^{x}\right)^{2}}dx.$$
The third integral above vanishes because its integrand is an odd function. Hopefully, it is trivial to prove that $\displaystyle \int_{-\infty}^{\infty}\frac{e^{x}}{\left(1+e^{x}\right)^{2}}dx = 1$.
Going back to $\displaystyle\lim_{R\to\infty}\oint_{C} f(z)dz$, we get
$$
\begin{align}
\lim_{R\to\infty}\int_{-R}^{R}f(z)dz &= 6\pi^3 i + \lim_{R\to\infty}\int_{-R}^{R}f(x)dx + 6\pi i I - 12\pi^2 (0) - 8\pi^3 i (1). \\
\end{align}
$$
In conclusion, the integral $I$ is $\displaystyle \frac{\pi^2}{3}$, and we are finished!