Since no one else directly followed through on the comments that immediately followed the original posting:
To Prove: $~\displaystyle
\frac{1}{2} + \cos(2\pi/11) + \cos(4\pi/11) = \frac{1}{4\sin(\pi/22)}.$
Let $~\alpha = \pi/11, ~z = e^{i\alpha}.$
Per the comment of Jyrki Lahtonen:
$2\cos(2\pi/11) = z^2 + z^{-2}.$
$2\cos(4\pi/11) = z^4 + z^{-4}.$
$2\sin(\pi/22) = 2\cos(10\pi/22) = 2\cos(5\pi/11) =
z^5 + z^{-5}.$
Therefore, the original problem may be re-expressed as proving that:
$$\frac{1}{2} ~\left[ ~1 + \left(z^2 + z^{-2}\right) +
\left(z^4 + z^{-4}\right) ~\right] = \frac{1}{2\left(z^5 + z^{-5}\right)}. \tag1 $$
The equation in (1) above is equivalent to showing that
$$1 = \left(z^5 + z^{-5}\right) \times ~\left[ ~1 + \left(z^2 + z^{-2}\right) +
\left(z^4 + z^{-4}\right) ~\right] \iff $$
$$1 = \left(z^1 + z^{-1}\right) + \left(z^3 + z^{-3}\right) + \left(z^5 + z^{-5}\right) + \left(z^7 + z^{-7}\right) + \left(z^9 + z^{-9}\right) \iff $$
$$\frac{1}{2} = \cos(\alpha) + \cos(3\alpha) + \cos(5\alpha) + \cos(7\alpha) + \cos(9\alpha). \tag2 $$
So, the problem has been converted into showing that
the equation in (2) above is true, when $~\alpha = (\pi/11).$
For $~\theta \in \Bbb{R}, ~n \in \Bbb{Z^+},~$
let $~\displaystyle f(\theta,n)~$ denote
$~\displaystyle 1 + \sum_{k = 1}^n \cos(k\theta).$
Per the comment of Martin R, you have that
$$f(\theta,n) = \frac{1}{2} +
\frac{\sin ~[ ~(2n + 1) ~\theta/2 ~]}{2\sin(\theta/2)}.$$
With $~\alpha = (\pi/11), ~$ let :
Then
$$T = R - S$$
$$= \left\{ ~\frac{1}{2} +
\frac{\sin ~[ ~21\pi/22 ~]}{2\sin(\pi/22)} ~\right\} - \left\{ ~\frac{1}{2} +
\frac{\sin ~[ ~11\pi/11 ~]}{2\sin(\pi/11)} ~\right\}$$
$$= \left( ~\frac{1}{2} + \frac{1}{2} ~\right) - \left( ~\frac{1}{2} + 0 ~\right) = \frac{1}{2}.$$