The key idea is a cyclotomic divisibility $\,\overbrace{\Phi_n(x)\mid \Phi_n(x^{\color{#c00}p})}^{\!\!\!\!\large \text{if prime}\ p\ \nmid\ n},\,$ special case $\,\color{#c00}{p=2}, n=3,\:\!$ which when homogenized, yields the inductive step
$\:\!\:\!f(a,b)\mid f(a^{\color{#c00}2},b^{\color{#c00}2}),\,$ for $\,f(a,b) = a^2+ab+b^2$.
Such divisibilities may be inductively iterated and chained, i.e. for $\,\color{#c00}m \le \color{#0a0}n$
$$f(a,b)\mid f(a^2,b^2)\mid f(a^4,b^4)\mid\, \cdots\, f(a^{\color{#c00}{2^{\large m}}}\!,b^{\color{#c00}{2^{\large m}}})\mid \cdots\, f(a^{\color{#0a0}{2^{\large n}}}\!,b^{\color{#0a0}{2^{\large n}}})\qquad$$
yielding broad (cyclotomic) generalizations of the OP divisibility (case $\,a\!=\!2,b\!=\!3)$.
See here and (esp.) its linked post for much on the cyclotomic aspects (including algorithms).