Let $\Omega$ be an open subset of $\mathbb R^d$ and $f \in L^1_{\text{loc}} (\Omega)$. I'm trying to do below exercise, i.e.,
Prove that $f^+ := \max\{f, 0\} \in L^1 (\Omega)$ IFF $$ B := \sup \left \{\int f \varphi : \varphi \in \mathcal C^\infty_c(\Omega) \text{ s.t. } \|\varphi\|_\infty \le 1 \text{ and } \varphi \ge 0 \right\} < \infty. $$ If $f^+ \in L^1 (\Omega)$ then $B = \|f^+\|_1$.
Could you have a check on my below attempt?
Is there a shorter alternative approach?
Let $$ A := \sup \left \{\int f^+ \varphi : \varphi \in \mathcal C^\infty_c(\Omega) \text{ s.t. } \|\varphi\|_\infty \le 1 \right\}. $$
Let's show that $A=B$. Let $f^- := \max\{-f, 0\}$. Then $$ \begin{align} B &= \sup \left \{\int f^+ \varphi - \int f^- \varphi : \varphi \in \mathcal C^\infty_c(\Omega) \text{ s.t. } \|\varphi\|_\infty \le 1 \text{ and } \varphi \ge 0 \right\} \\ &\le \sup \left \{\int f^+ \varphi : \varphi \in \mathcal C^\infty_c(\Omega) \text{ s.t. } \|\varphi\|_\infty \le 1 \text{ and } \varphi \ge 0 \right\} \\ &\le \sup \left \{\int f^+ \varphi : \varphi \in \mathcal C^\infty_c(\Omega) \text{ s.t. } \|\varphi\|_\infty \le 1 \right\} \\ &=A. \end{align} $$
Let's prove the reverse, i.e., $A \le B$. We need the following approximation result, i.e.,
Lemma 1 Let $\Omega$ be an open subset of $\mathbb R^d$. Let $u \in L^\infty (\Omega)$.
- There is $(u_n) \subset \mathcal C_c^{\infty} (\Omega)$ such that
- $\sup_n \|u_n\|_\infty \le \|u\|_\infty$,
- $u_n \xrightarrow{n\to\infty} u$ a.e. on $\Omega$, and
- $u_n \xrightarrow{n\to\infty} u$ in $L^\infty (\Omega)$ w.r.t. the weak$^*$ topology $\sigma(L^\infty, L^1)$.
- If $u \ge 0$ a.e. on $\Omega$, we can further take $u_n \ge 0$ a.e. on $\Omega$.
- Deduce that $\mathcal C_c^{\infty} (\Omega)$ is dense in $L^\infty (\Omega)$ w.r.t. $\sigma(L^\infty, L^1)$.
Fix $\varphi \in \mathcal C^\infty_c(\Omega)$ such that $\|\varphi\|_\infty \le 1$. Let $P := \{x \in \Omega : \varphi (x) >0\}$. Then $P$ is open in $\Omega$. Fix $\varepsilon >0$. By Lemma 1, there is $\psi \in \mathcal C_c^{\infty} (P)$ such that $\psi \ge 0, \|\psi\|_\infty \le 1$ and $|\int_P f^+ \varphi - \int_P f \psi| < \varepsilon$. We define $\overline \psi:\Omega \to \mathbb R$ by $\overline \psi (x) := \psi (x)$ if $x \in P$ and $0$ otherwise. Then $\overline \psi \in \mathcal C_c^{\infty} (\Omega)$ such that $\overline \psi \ge 0, \|\overline \psi\|_\infty \le 1$ and $$ \int f^+ \varphi \le \int_P f^+ \varphi \le \varepsilon +\int_P f^+ \psi = \varepsilon +\int f^+ \overline \psi. $$
Let $\varepsilon \downarrow 0$, we get $$ A = \sup \left \{\int f^+ \varphi : \varphi \in \mathcal C^\infty_c(\Omega) \text{ s.t. } \|\varphi\|_\infty \le 1 \text{ and } \varphi \ge 0 \right\}. $$
Fix $\varphi \in \mathcal C^\infty_c(\Omega)$ such that $\|\varphi\|_\infty \le 1$ and $\varphi \ge 0$. Let $P := \{x \in \Omega : f (x) >0\}$. Then $\int f^+ \varphi = \int_P f \varphi$. Fix $\varepsilon >0$. Because Lebesgue measure is outer regular, there is an open subset $Q$ of $\Omega$ such that $P \subset Q$ and $$ \bigg | \int_P f \varphi - \int_Q f \varphi \bigg |< \varepsilon. $$
By Lemma 1, there is $\psi \in \mathcal C_c^{\infty} (Q)$ such that $\psi \ge 0, \|\psi\|_\infty \le 1$ and $|\int_Q f \varphi - \int_Q f \psi| < \varepsilon$. We define $\overline \psi:\Omega \to \mathbb R$ by $\overline \psi (x) := \psi (x)$ if $x \in Q$ and $0$ otherwise. Then $\overline \psi \in \mathcal C_c^{\infty} (\Omega)$ such that $\overline \psi \ge 0, \|\overline \psi\|_\infty \le 1$ and $$ \int f^+ \varphi \le \varepsilon +\int_Q f \varphi \le 2 \varepsilon + \int_Q f \psi = 2\varepsilon +\int f \overline \psi. $$
Let $\varepsilon \downarrow 0$, we get $$ \begin{align} A &\le \sup \left \{\int f \varphi : \varphi \in \mathcal C^\infty_c(\Omega) \text{ s.t. } \|\varphi\|_\infty \le 1 \text{ and } \varphi \ge 0 \right\} \\ &= B. \end{align} $$
The claim then follows from below result, i.e.,
Lemma 2 $f \in L^1 (\Omega)$ IFF $$ A := \sup \left \{\int f \varphi : \varphi \in \mathcal C^\infty_c(\Omega) \text{ s.t. } \|\varphi\|_\infty \le 1 \right\} < \infty. $$ If $f \in L^1 (\Omega)$ then $A = \|f\|_1$.
Not quite sure what is the difference
– FShrike Apr 11 '23 at 10:37