Definition Let $S$ be a finite set. For any probability distributions $\mu,\nu$ on $S$, $$\lVert\mu-\nu\rVert_{TV}:=\max_{A\subset S}|\mu(A)-\nu(A)|\text{.}$$ Let $P$ be a transition kernel with state space $S$. For any positive interger $t$, $$\overline{d}(t):=\max_{x,y\in S}\lVert P^t(x,\cdot)-P^t(y,\cdot)\rVert_{TV}\text{.}$$
Prove that $$\overline{d}(t)=\sup\lVert\mu P^t-\nu P^t\rVert_{TV}$$ where the supremum is taken over all distributions $\mu,\nu$ on $S$.
That $\mbox{LHS}\leq\mbox{RHS}$ is clear. For any distributions $\mu,\nu$ on $S$ and $A\subset S$, $$\begin{align*}|\mu P^t(A)-\nu P^t(A)|&=|\sum_x\mu(x)P^t(x,A)-\sum_x\mu(x)P^t(y,A)+\sum_x\nu(x)P^t(y,A)-\sum_x\nu(x)P^t(x,A)|\\ &=|\sum_x(\mu(x)-\nu(x))(P^t(x,A)-P^t(y,A))| \end{align*}$$ for any $y\in S$.
I don't know how to proceed any further.