If $\sin(\pi/13)\sin(3\pi/13)\sin(4\pi/13)={a\over b}\sqrt{\frac{k-3\sqrt k}{2}}$, find $\frac{5a+b}{k}$.
Let $s=\sin(\pi/13)\sin(3\pi/13)\sin(4\pi/13)$ and $x=\sqrt k$. Then the above equation becomes
$$\frac{x(x-3)}{2}=\frac{s^2b^2}{a^2}\text{ i.e. }x^2-3x-\frac{2s^2b^2}{a^2}=0$$
Therefore $\displaystyle{x=\frac{3|a|\pm \sqrt{9a^2+8s^2b^2}}{2|a|}}$
I have to find the $s$. There is a problem here which evaluates $\sin(\pi/13)+\sin(3\pi/13)+\sin(4\pi/13)$.
So if I assume $\alpha=e^{i\pi/13}$. We get $s=\frac{(\alpha+\alpha^{12})(\alpha^3+\alpha^{10})(\alpha^4+\alpha^9)}{-8i}$.
I am not having any idea to proceed further. Can anyone help me with an idea to deal with this problem? Thanks for your help in advance.