As the title says, I have to find all pairs of natural numbers $(x, y)$ such that $3^x = y^2 + 2$ holds. The pairs $(1, 1), (3, 5)$ seem to be the only solutions but I'm not sure how to prove that they indeed are the only pairs which satisfy the given equation.
-
Please clarify your specific problem or provide additional details to highlight exactly what you need. As it's currently written, it's hard to tell exactly what you're asking. Otherwise, this is a great question in the works. :) – CrSb0001 May 31 '23 at 13:27
-
For an integer $x$ in the range $[0,10^5]$ , $3^x-2$ is a perfect power only for $x=3$. – Peter May 31 '23 at 13:33
-
Using modular congruences, you can show that $x$ needs to be odd and $y\equiv\pm1\mod6$. Not sure how to proceed from there beyond brute force – Moko19 May 31 '23 at 15:01
-
1See also Solving: $3^m-2=n^2$ and Integer solutions of $3^x = 2 + y^2$ – Sil May 31 '23 at 16:49
1 Answers
Elementary proof:
Knowing $x$ needs to be odd, we can write $3^x = 3 w^2$ and ask when $w$ might be a power of three, in $3 w^2 = y^2 + 2.$ This does not happen again after your initial examples, there is an accident: this variable $w$ is frequently divisible by $3,$ but it is not divisible by $9$ unless it is also divisible by $17.$ Look up the phrase Pisano Periods. This is, you see, a finite and definitive check.
Oh, see below, the sequence of $w$ values obeys $$ w_{n+2} = 4 w_{n+1} - w_n $$ It is uncommon for such a law to cover all the $w$ values. Usually it is delayed, as in some $v_{n+8} = 4 v_{n+4} - v_n . $ The necessary thing: $2$ is prime, in our $3 w^2 - 2 $ being a square.
The periodicity in the two lists below can be summarized, and proved as:
$$ w_{n+9} + w_{n} \equiv 0 \pmod 9 $$
$$ w_{n+18} \equiv w_n \pmod 9 $$ and $$ w_{n+9} + w_{n} \equiv 0 \pmod{17} $$
$$ w_{n+18} \equiv w_n \pmod{17} $$
You don't need to find actual values of the sequence $w_n$ to see this: you can just begin with $w_1 = 1, w_2 = 3,$ and reduce either mod 9 or mod 17 each time the rule $ w_{n+2} = 4 w_{n+1} - w_n $ is invoked: mod 9 the sequence is $$ 1, 3, 2, 5, 0, 4, 7, 6, 8, 8, 6, 7, 4, 0, 5, 2, 3, 1, 1, 3, 2, 5, 0, 4, 7, ... $$
mod 17 the sequence is $$ 1, 3, 11, 7, 0, 10, 6, 14, 16, 16, 14, 6, 10, 0, 7, 11, 3, 1, 1, 3, 11, 7, 0, 10, 6, ... $$
$$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $$
1 1 mod nine 1
2 3 mod nine 3
3 11 mod nine 2
4 41 mod nine 5
5 153 mod nine 0 ++++++++++
6 571 mod nine 4
7 2131 mod nine 7
8 7953 mod nine 6
9 29681 mod nine 8
10 110771 mod nine 8
11 413403 mod nine 6
12 1542841 mod nine 7
13 5757961 mod nine 4
14 21489003 mod nine 0 ++++++++++
15 80198051 mod nine 5
16 299303201 mod nine 2
17 1117014753 mod nine 3
18 4168755811 mod nine 1
19 15558008491 mod nine 1
20 58063278153 mod nine 3
21 216695104121 mod nine 2
22 808717138331 mod nine 5
23 3018173449203 mod nine 0 ++++++++++
24 11263976658481 mod nine 4
25 42037733184721 mod nine 7
$$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $$
1 1 mod seventeen 1
2 3 mod seventeen 3
3 11 mod seventeen 11
4 41 mod seventeen 7
5 153 mod seventeen 0 ++++++++++
6 571 mod seventeen 10
7 2131 mod seventeen 6
8 7953 mod seventeen 14
9 29681 mod seventeen 16
10 110771 mod seventeen 16
11 413403 mod seventeen 14
12 1542841 mod seventeen 6
13 5757961 mod seventeen 10
14 21489003 mod seventeen 0 ++++++++++
15 80198051 mod seventeen 7
16 299303201 mod seventeen 11
17 1117014753 mod seventeen 3
18 4168755811 mod seventeen 1
19 15558008491 mod seventeen 1
20 58063278153 mod seventeen 3
21 216695104121 mod seventeen 11
22 808717138331 mod seventeen 7
23 3018173449203 mod seventeen 0 ++++++++++
24 11263976658481 mod seventeen 10
25 42037733184721 mod seventeen 6
$$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $$
- 139,541