The following is an alternative way to show that $$S(a,z) = \sum_{n\in\mathbb{Z}}\frac{e^{i n \pi a}}{(n\pi+z)^2} = \frac{e^{-iaz}}{\sin^2 (z)}\left(1+iae^{iz}\sin (z)\right), \quad 0 \le a \le 2.$$
This series is evaluated in metamorphy's answer using the Poisson summation formula.
Assume that $f(w)$ is a meromorphic function and $f(w) = O\left(\frac{1}{w^{2}} \right)$ as $|w| \to \infty$.
A residue calculation using the cotangent trick can be used to evaluate $$\sum_{n \in \mathbb{Z}} e^{i n \pi a} f(n), \quad 0 \le a \le 2. $$
But instead of integrating $\pi \cot(\pi w) e^{i \pi a w} f(w)$ around a square contour with vertices at $ \pm \left(N+ \frac{1}{2} \right) \pm i\left(N+ \frac{1}{2} \right)$, we integrate $$\pi \left( \cot (\pi w) -i \right) e^{i \pi a w } f(w) =\pi e^{-i \pi w} \csc(\pi w) e^{i \pi a w}f(w).$$
The reason for doing this, as I explained in an answer here, is to counter the fact that the magnitude of $e^{i a w}$, $a >0$, grows exponentially as $\Im(w) \to - \infty$.
The restriction $0 \le a \le 2$ ensures that the integral vanishes as $N \to \infty$.
For $$f(w) = \frac{1}{(\pi w +z)^{2}},$$ we get $$ \begin{align} S(a,z) = \sum_{n\in\mathbb{Z}}\frac{e^{i n \pi a}}{(n\pi+z)^2} &= - \operatorname{Res} \left[\frac{ \pi e^{-i \pi w}\csc(\pi w) \, e^{i \pi a w}}{(\pi w +z)^{2}}, w= - \frac{z}{\pi} \right] \\ & = -\operatorname{Res} \left[\frac{\csc(\pi w) \, e^{i\pi (a-1)w }}{\pi (w +\frac{z}{\pi})^{2}}, w= - \frac{z}{\pi} \right] \\ &= -\lim_{w \to - \frac{z}{\pi}}\frac{1}{\pi} \frac{\mathrm d}{\mathrm dw}\csc(\pi w) \, e^{i \pi (a-1)w} \\ &= - \lim_{w \to - \frac{z}{\pi}}\frac{1}{\pi} \left(- \pi \cot(\pi w) \csc(\pi w) \, e^{i \pi (a-1)w} + i \pi (a-1) \csc(\pi w) \, e^{i \pi (a-1)w}\right) \\ &= e^{- i (a-1)z} \left(\cot(z)\csc(z)+ i (a-1) \csc(z) \right) \\ &= \frac{e^{-iaz} e^{iz}}{\sin^{2}(z)} \left(\cos(z) +i(a-1) \sin(z) \right) \\ &= \frac{e^{-iaz} e^{iz}}{\sin^{2}(z)} \left(e^{-i z} +i a \sin(z) \right) \\ &= \frac{e^{-i az}}{\sin^{2}(z)} \left(1 + i a e^{i z} \sin(z) \right). \end{align}$$
To show that $$\sum_{n\in\mathbb{Z}}\frac{(-1)^n e^{in\pi a}}{(n\pi+z)^2}=\frac{e^{-iaz}}{\sin^2 (z)}\left( \cos (z)+ia\sin (z) \right), \quad -1 \le a \le 1, $$ we can use the typical cosecant trick.
Similar to before, the restriction $-1 \le a \le 1$ ensures that the integral vanishes as $N \to \infty$.
We get
$$ \begin{align} \sum_{n\in\mathbb{Z}}\frac{(-1)^n e^{in\pi a}}{(n\pi+z)^2} &= - \operatorname{Res} \left[\frac{ \pi \csc(\pi w) \, e^{i \pi a w}}{(\pi w +z)^{2}}, w= - \frac{z}{\pi} \right] \\ &= -\operatorname{Res} \left[\frac{\csc(\pi w) \, e^{i\pi a w }}{\pi (w +\frac{z}{\pi})^{2}}, w= - \frac{z}{\pi} \right] \\ &= -\lim_{w \to - \frac{z}{\pi}}\frac{1}{\pi} \frac{\mathrm d}{\mathrm dw}\csc(\pi w) \, e^{i \pi a w} \\ &= - \lim_{w \to - \frac{z}{\pi}}\frac{1}{\pi} \left(- \pi \cot(\pi w) \csc(\pi w) \, e^{i \pi a w} + i \pi a\csc(\pi w) \, e^{i \pi a w}\right) \\ &=e^{- i a z} \left(\cot(z)\csc(z)+ i a \csc(z) \right) \\ &= \frac{e^{-ia z}}{\sin^{2}(z)} \left(\cos(z) +ia \sin(z) \right). \end{align}$$