Demonstrate the inequality$$\frac{2}{2!}+\frac{7}{3!}+...+\frac{k^2-2}{k!}+...+\frac{9998}{100!}<3$$
Attempt:
$$\sum^{100}_{n=2} \frac{n^2-2}{n!}$$
Note that $n^2-2 \leq n^2$, so we have:
$$\sum^{100}_{n=2} \frac{n^2-2}{n!} \leq \sum^{100 }_{n=2}\frac{n^2}{n !}=\sum^{100}_{n=2}\frac{n}{(n-1)!}$$
I would like to solve the problem in a more elementary way, without using a calculator. I thought this problem might have some application to the Bernoulli Inequality, but I have no idea.