I would like to calculate a lower bound on the minimum eigenvalue of the matrix $$M = e_1 e_1^\top + L$$
where $L$ is the Laplacian of the line graph on $T$ vertices: $$1 -2 -3 -4-\ldots -T $$ and $e_1$ is the unit vector $(1,0,0,\ldots, 0)$.
Equivalently, $$M = \begin{pmatrix}2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 &\cdots & 0 \\ 0 & \ddots & \ddots & \ddots & & \vdots \\ \vdots & & & & & \vdots \\ 0 & \ldots & \ldots &-1&2& -1 \\ 0 & \ldots & \ldots &0 &-1& 1 \end{pmatrix}$$
Any suggestions?