Prove/Disprove $\displaystyle \sum_{i=1}^{p-1} (i!)^2 \not\equiv 0 (\text{mod } p)$.
While I was trying this problem, I had to show that $\displaystyle p \not\Bigg|\sum_{i=1}^{p-1} (i!)^2$. So I tried to solve this but failed. Here's my attempt.
\begin{align} & \text{Approach 1. What's }[i!(p-1-i)!]^2 \text{ mod } p?\\ \ \\ & \text{Note. } {p-1 \choose i}^2 \equiv 1 (\text{mod } p). \\ \Rightarrow \; & \left[ \frac {(p-1)!} {i!(p-1-i)!} \right]^2 \equiv 1 (\text{mod }p). \\ & \text{By Wilson's theorem, } (p-1)! \equiv -1 (\text{mod } p). \\ \therefore \; & \left[i!(p-1-i)!\right]^2 \equiv 1 (\text{mod } p). \\ \ \\ & \text{Approach 2. How can } 2\sum_{i=1}^{p-1} (i!)^2 \text{ change its form?} \\ &2\sum_{i=1}^{p-1} (i!)^2 = \sum_{i=1}^{p-1} \left\{(i!)^2+[(p-i)!]^2\right\}\\ & = \sum_{i=1}^{p-1} \left\{ [i!+(p-i)!]^2 -2\cdot i!(p-i)!\right\} \end{align}
Uh... Any tips?