If $\displaystyle \frac{a^2}{36}-\frac{b^2}{25}=1$.Then range of $\displaystyle \frac{36}{a}+\frac{25}{b}$ is
Using Trigonometric Substution, We have
$\displaystyle a=6\sec\theta$ and $y=5\tan\theta$.
Then we have expression
$\displaystyle f(\theta)=6\cos\theta+5\cot\theta$
Then we have $\displaystyle f'(\theta)=-6\sin\theta-5\csc^2\theta$
Now for maximum and minimum , We have $\displaystyle f'(\theta)=0$
$\displaystyle 6\sin\theta+5\csc^2\theta=0\Longrightarrow \sin\theta=-(5/6)^{\frac{1}{3}}$
And $\displaystyle f''(\theta)=-6\cos\theta+10\csc^2\theta\cot\theta$
Put $\displaystyle \sin\theta=-(5/6)^{\frac{1}{3}}$ in $f''(\theta)$
Please have a look on that problem
