One way to make sense of the hint would be to look for $\,m,n\,$ such that:$$(m+n)^3-3mn(m+n)-(m^3+n^3) = (m+n)^3 - 6 (m+n) + 7$$
Identifying coefficients of $(m+n)$ gives $\,mn=2\,$ and $\,m^3+n^3=-7\,$. Eliminating $\,n = \dfrac{2}{m}\,$ between the two equations:
$$
m^3 + \frac{8}{m^3} = -7 \;\;\iff\;\; m^6 + 7 m^3 + 8 = 0
$$
The latter is a quadratic in $\,m^3\,$, so:
$$
m^3 = \frac{-7 \pm \sqrt{17}}{2} \;\;\implies\;\; n^3 = \frac{8}{m^3} = \frac{-7 \mp \sqrt{17}}{2}
$$
Then the real root of the original cubic is:
$$
x = m + n = \sqrt[3]{\frac{-7 + \sqrt{17}}{2}} + \sqrt[3]{\frac{-7 - \sqrt{17}}{2}}
$$