The series diverges. By partial summation, you can establish
$$\sum_{k\le n} \frac1k = \log n + O(1)$$
i.e., for some $n_0 \in \Bbb N$ and $C_0 > 0$, we have $\sum_{k\le n} \frac1 k \le \log n + C_0$ for every $n\ge n_0$. Next, you can find a constant $C_1 > 0$, and $n_1 \in \Bbb N$ such that $\log n + C_0 \le C_1 \log n$ for every $n \ge n_1$. Choose $m = \max\{n_0, n_1\}$. Thus, $\sum_{k\le n} \frac 1 k \le C_1 \log n$ for all $n\ge m$.
Finally,
$$\sum_{n=1}^\infty\frac{1}{n(1+\frac{1}{2}+\cdots+\frac{1}{n})} \ge \sum_{n=m}^\infty\frac{1}{n(1+\frac{1}{2}+\cdots+\frac{1}{n})} \ge \frac{1}{C_1} \sum_{n=m}^\infty \frac{1}{n\log n} = \infty$$
as the series $\sum_{n=m}^\infty \frac{1}{n\log n}$ diverges by the Cauchy condensation test, for example.