To prove: $$\frac{1\cdot 3 \cdot 5 \cdot ... \cdot 9999}{2\cdot 4 \cdot 6 \cdot ... \cdot 10000} < \frac{1}{100} $$
I've got to the point that the left side of the equation above is equal to $$\frac{10000!}{2^{10000} \cdot (5000!)^2}$$
To prove: $$\frac{1\cdot 3 \cdot 5 \cdot ... \cdot 9999}{2\cdot 4 \cdot 6 \cdot ... \cdot 10000} < \frac{1}{100} $$
I've got to the point that the left side of the equation above is equal to $$\frac{10000!}{2^{10000} \cdot (5000!)^2}$$