15

I found this integral from a friend of mine $$I = \int_0^{\frac{\sqrt3}2} {\frac{1}{{{x^{3/4}}{{\left( {1 + x} \right)}^{3/4}}}}dx} $$

Which its closed-form is :$$\frac{{2\sqrt 2 {\pi ^{3/2}}}}{{3{\Gamma ^2}( {\frac{3}{4}} )}}$$ Look at this closed form I have a feeling that the given integral can be involved with the complete elliptic integral of the first kind $K( {\frac{1}{2}} )$. But I don't know how to convert this integral to get that result.

I tried to use sub:$$\eqalign{ & x = \frac{{1 - t}}{{1 + t}} \Rightarrow t = \frac{{1 - x}}{{1 + x}} \Rightarrow dx = - \frac{2}{{{{\left( {1 + t} \right)}^2}}}dt \cr & \Rightarrow I = \frac{2}{{{2^{3/4}}}}\int\limits_{7 - 4\sqrt 3 }^1 {\frac{1}{{\sqrt {1 + t} {{\left( {1 - t} \right)}^{3/4}}}}} dt,{\text{ since }}7 - 4\sqrt 3 = {\left( {2 - \sqrt 3 } \right)^2}{\text{ then let}}:t = {u^2} \cr & \Rightarrow I = \frac{4}{{{2^{3/4}}}}\int\limits_{2 - \sqrt 3 }^1 {\frac{u}{{\sqrt {1 + {u^2}} {{\left( {1 - {u^2}} \right)}^{3/4}}}}} du \cr} $$

So I get stuck here. May I ask for help? Or give me a hint about substitution. Thank you very much.

Edit #1: After using generalized binomial theorem and changing order of summation and integration, with some manipulation with the last sum, I arrived at:$$I=2\ 2^{3/4} \sqrt[8]{3} \, _2F_1\left(\frac{1}{4},\frac{3}{4};\frac{5}{4};-\frac{\sqrt{3}}{2}\right)$$

May be, there is a transformation with $_2F_1$ can link this result with the elliptic integral. I am still trying to figure out.

MathFail
  • 21,128
OnTheWay
  • 2,669
  • 1
    The integral equals $\sqrt2(-1)^\frac34\int_\pi^{2\sin^{-1}\left(\frac{\sqrt3+1}2\right)}\sin^{-\frac12}(x)$, with the complex arcsine, and the antiderivative being an elliptic integral, but it is hard to see how this would give $\frac{4\sqrt2}3K(1/2)$. Maybe we need a parameter transformation formula – Тyma Gaidash Jun 29 '23 at 12:21
  • 4
    Btw, please don't delete posts if you later think that it's "too easy" or whatever. E.g. this one about the inverse tangent, you've deleted it twice now. It's generally good for the community to leave (well-received) posts standing, they may receive interesting answers in the future – FShrike Jun 29 '23 at 14:32
  • 1
    This integral is an example of an incomplete beta function. Hopefully that will help you find information. – Greg Martin Jun 29 '23 at 16:26

3 Answers3

8

This is to answer the OP how to convert it to the elliptic integral. Let $u=2x+1$

$$I=\int_1^{1+\sqrt3} \frac1{(u^2-1)^{3/4}}du$$

Let $u=\csc \theta$

$$I=\sqrt2\int_{\theta_0}^{\pi/2} \frac1{\sqrt{\sin\theta\cos\theta}}d\theta$$

where $\theta_0=\arcsin\frac{\sqrt3-1}2$, and note that

$$2\sin\theta\cos\theta=(\sin\theta+\cos\theta)^2-1=2\cos^2(\theta-\frac\pi4)-1=1-2\sin^2(\theta-\frac\pi4)$$

hence $$I=2\int_{\theta_0}^{\pi/2} \frac1{\sqrt{1-2\sin^2(\theta-\frac\pi4)}}d\theta$$

Let $\phi=\theta-\frac\pi4$

$$I=2\int_{\theta_0-\frac\pi4}^{\frac\pi4} \frac1{\sqrt{1-2\sin^2 \phi}}d\phi$$

Use the defintion of elliptic integral of the first kind

$$F(a,k)=\int_0^a \frac1{\sqrt{1-k^2\sin^2\phi}}d\phi$$

We get

$$\int_0^{\frac{\sqrt3}2} {\frac{1}{{{x^{3/4}}{{\left( {1 + x} \right)}^{3/4}}}}dx}=2F\left(\frac\pi4,\sqrt2\right)-2F\left(\arcsin\left(\frac{\sqrt3-1}2\right)-\frac\pi4,\sqrt2\right)\tag{1}$$

Using the Reciprocal-Modulus Transformation formula as suggested by @Tyma Gaidash, the first half of eq.(1) is converted to

$$2F\left(\frac\pi4,\sqrt2\right)=2\cdot \frac1{\sqrt2} F\left(\frac\pi2, \frac1{\sqrt2}\right)=\sqrt2 K\left(\frac1{\sqrt2}\right)$$

where $K(k)=\int_0^\frac\pi2 \frac1{\sqrt{1-k^2\sin^2\phi}}d\phi$ is complete elliptic integral of the first kind, hence

$$\boxed{\int_0^{\frac{\sqrt3}2} {\frac{1}{{{x^{3/4}}{{\left( {1 + x} \right)}^{3/4}}}}dx}=\sqrt2 K\left(\frac1{\sqrt2}\right)-2F\left(\arcsin\left(\frac{\sqrt3-1}2\right)-\frac\pi4,\sqrt2\right)}$$


Remarks:

For the closed form, the integral limit $\sqrt3+1=\frac2{\sqrt3-1}$ reminds me maybe it is related to the elliptic curve, where I ever asked a question here. But I have very limited knowledge on this topic.

MathFail
  • 21,128
4

$\def\cn{\operatorname{cn}} \def\dn{\operatorname{dn}} \def\K{\operatorname K} \def\I{\operatorname I} \def\B{\operatorname B} \def\F{\text F} \def\sd{\operatorname {sd}} \def\sn{\operatorname {sn}} $

Here is how to find the OP’s closed form

Consider Jacobi $\sn(z,m)$, Jacobi $\sd(z,m)$, and the half period Jacobi $\cn(z,m)$ identity:

$$\cn\left(\frac23\K\left(\frac12\right),\frac12\right)= \cn\left(\frac13\K\left(\frac12\right)-\K\left(\frac12\right),\frac12\right)=\frac1{\sqrt2}\sd\left(\frac13\K\left(\frac12\right),\frac12\right)=\sqrt{\frac2{x^2+1}-1},x=\cn\left(\frac13\K\left(\frac12\right),\frac12\right)$$

and the Jacobi $\cn(z,m)$ double angle formula:

$$\cn\left(\frac23\K\left(\frac12\right),\frac12\right)=\frac{\cn^2\left(\frac13\K\left(\frac12\right),\frac12\right)-\sn^2\left(\frac13\K\left(\frac12\right),\frac12\right)\dn^2 \left(\frac13\K\left(\frac12\right),\frac12\right)}{1-\frac12 \sn^4\left(\frac13\K\left(\frac12\right),\frac12\right)}=-\frac{4x^2}{x^4-2x^2-1}-1$$

Solving for $x$:

$$-\frac{4x^2}{x^4-2x^2-1}-1= \sqrt{\frac2{x^2+1}-1}\implies x=\cn\left(\frac13\K\left(\frac12\right),\frac12\right)=\sqrt[4]{2\sqrt3-3}$$

the above method is from @Start Wearing Purple’s in this question. Now, apply a reciprocal type Jacobi $\dn(z,m)$ transformation:

$$\cn\left(\frac13\K\left(\frac12\right),\frac12\right)=\dn\left(\frac{1+i}6\K(2),2\right)\implies 1-\dn^4\left(\frac{1+i}6\K(2),2\right)=4-2\sqrt3$$

and notice inverse beta regularized in $1-\dn^4\left(\frac{1+i}2\K(2)x,2\right)=\I^{-1}_x\left(\frac12,\frac14\right)$ from section 4 of this post to get:

$$4-2\sqrt3=\I^{-1}_\frac13\left(\frac12,\frac14\right)$$

Taking the regularized beta function on both sides and converting it into an incomplete beta function gives us the closed form:

$$\I_{4-2\sqrt3}\left(\frac12,\frac14\right)=\frac13\implies \color{blue}{\B\left(\frac12,\frac14\right)-\B_{4-2\sqrt3}\left(\frac12,\frac14\right)}=\frac23\B\left(\frac12,\frac14\right)= \frac{{2\sqrt 2 {\pi ^{3/2}}}}{{3{\Gamma ^2}( {\frac{3}{4}} )}} $$


The OP’s hypergeometric function converts to an incomplete beta function:

$$2^\frac74 \sqrt[8]3 \, _2\F_1\left(\frac14,\frac34;\frac54;-\frac{\sqrt{3}}{2}\right) =(-1)^{-\frac14}\B_{-\frac{\sqrt 3}2}\left(\frac14,\frac14\right)$$

Afterwards, we apply a complementary argument and reciprocal argument identity transformation:

$$(-1)^{-\frac14}\B_{-\frac{\sqrt 3}2}\left(\frac14,\frac14\right)=(-1)^{-\frac14}\left(\B\left(\frac14,\frac14\right)-\B_{1+\frac{\sqrt3}2}\left(\frac14,\frac14\right)\right)= \color{blue}{\B\left(\frac12,\frac14\right)-\B_{4-2\sqrt3}\left(\frac12,\frac14\right)}$$

The blue expressions matches the integral, so combine them and their equalities. Therefore the lemniscate arc length constant $\text s$ appears:

$$\bbox[5px,border: 3px solid #ADD8F7]{\int_0^{\frac{\sqrt3}2}x^{-\frac34}(x+1)^{-\frac34}dx =\frac13\sqrt{\frac2\pi}\Gamma^2\left(\frac14\right)=\frac23\text s}$$

Тyma Gaidash
  • 12,081
2

$$ \begin{align} I &:= \int_{0}^{\sqrt{3}/2}\frac{1}{x^{3/4}\left(1+x\right)^{3/4}}dx \\ &= \int_{0}^{\sqrt{3}/2}\frac{1}{x^{3/4}}\left(1-\left(-x\right)\right)^{5/4-5/4-3/4}\ _{2}F_{1}\left(\frac{5}{4}-\frac{5}{4},\frac{5}{4}-\frac{3}{4};\frac{5}{4};-x\right)dx \\ &= \int_{0}^{\sqrt{3}/2}\frac{1}{x^{3/4}}\ _{2}F_{1}\left(\frac{5}{4},\frac{3}{4};\frac{5}{4};-x\right)dx \tag{1}\\ &= \int_{0}^{\sqrt{3}/2}\frac{1}{x^{3/4}}\ _{2}F_{1}\left(\frac{1}{4}+1,\frac{3}{4};\frac{5}{4};-x\right)dx \\ &= \int_{0}^{\sqrt{3}/2}\frac{1}{x^{3/4}}\left(\frac{3/4 \cdot (-x)}{5/4}\ _{2}F_{1}\left(\frac{1}{4}+1,\frac{3}{4}+1;\frac{5}{4}+1;-x\right)+ \text{ } _{2}F_{1}\left(\frac{1}{4},\frac{3}{4};\frac{5}{4};-x\right)\right)dx \tag{2}\\ &= \int_{0}^{\sqrt{3}/2}\left(\frac{1}{x^{3/4}}\cdot \text{ }_{2}F_{1}\left(\frac{1}{4},\frac{3}{4};\frac{5}{4};-x\right)+4x^{1/4}\cdot\frac{1/4\cdot3/4}{-5/4}\ _{2}F_{1}\left(\frac{5}{4},\frac{7}{4};\frac{9}{4};-x\right)\right)dx \\ &= \int_{0}^{\sqrt{3}/2}\frac{d}{dx}4x^{1/4}\ _{2}F_{1}\left(\frac{1}{4},\frac{3}{4};\frac{5}{4};-x\right)dx \tag{3}\\ &= 4x^{1/4}\ _{2}F_{1}\left(\frac{1}{4},\frac{3}{4};\frac{5}{4};-x\right) \Bigg|_{0}^{\sqrt{3}/2} \\ &= 4\left(\frac{\sqrt{3}}{2}\right)^{1/4}\ _{2}F_{1}\left(\frac{1}{4},\frac{3}{4};\frac{5}{4};-\frac{\sqrt{3}}{2}\right)-4\left(0\right)^{1/4}\ _{2}F_{1}\left(\frac{1}{4},\frac{3}{4};\frac{5}{4};-0\right) \\ &= 2^{7/4}3^{1/8}\ _{2}F_{1}\left(\frac{1}{4},\frac{3}{4};\frac{5}{4};-\frac{\sqrt{3}}{2}\right) \end{align} $$

$(1)$ $(2)$ $(3)$

Accelerator
  • 4,923