In this answer, we show that :
$$
\begin{align}\bbox[5px,border:2px solid #C0A000]{\tan^2\frac{\pi}{18}+\tan^2\frac{5\pi}{18}+\tan^2\frac{7\pi}{18}=9}\end{align}
$$
and
$$
\begin{align}\bbox[5px,border:2px solid #C0A000]{\tan\frac{\pi}{18}\tan\frac{5\pi}{18}\tan\frac{7\pi}{18}=\frac {\sqrt 3}{3}}\end{align}
$$
You can observe that,
$$
\begin{align}\left|\tan \frac{\pi}{6}\right|=\left|\tan \frac{5\pi}{6}\right|=\left|\tan \frac{7\pi}{6}\right|\end{align}
$$
or
$$
\begin{align}\tan^2 \frac{\pi}{6}=\tan^2 \frac{5\pi}{6}=\tan^2 \frac{7\pi}{6}\end{align}
$$
Then, let us recall the $\tan (3x)$ formula in terms of $\tan x$ :
$$\tan (3x)=\frac {3\tan x-\tan^3x}{1-3\tan^2x}$$
By squaring both side of the identity and substituting $\color{#c00}{\tan x=y}$ you have :
$$\tan^2(3x)=\frac {9y^2-6y^4+y^6}{1-6y^2+9y^4}$$
By setting $x_1=\dfrac {\pi}{18}$ and $x_2=\dfrac {5\pi}{18}$ and $x_3=\dfrac {7\pi}{18}$, then substituting $\color{#c00}{y^2=u}$, we see that $\tan^2(3x)=\dfrac 13$, where
$$
\begin{align}u_1&=\tan^2 \frac {\pi}{18}\\
u_2&=\tan^2 \frac {5\pi}{18}\\
u_3&=\tan^2 \frac {7 \pi}{18}\end{align}
$$
which leads to the following :
$$
\begin{align}&\frac {9u-6u^2+u^3}{1-6u+9u^2}=\frac 13\\\\
\iff &3u^3-27u^2+33u-1=0\end{align}
$$
Finally, by applying the Vieta's formulas , you reach the following result :
$$u_1+u_2+u_3=\dfrac {27}{3}=9\thinspace .$$
which is equivalent to :
$$
\begin{align}\tan^2\frac{\pi}{18}+\tan^2\frac{5\pi}{18}+\tan^2\frac{7\pi}{18}=9\end{align}
$$
and since
$$
\begin{align}\tan\frac{\pi}{18}\tan\frac{5\pi}{18}\tan\frac{7\pi}{18}>0\end{align}
$$
then again by Vieta's formulas we have :
$$
\begin{align}u_1u_2u_3&=\frac 13\\
\implies \sqrt {u_1u_2u_3}&=\frac {\sqrt 3}{3}\end{align}
$$
which means that,
$$
\begin{align}\tan\frac{\pi}{18}\tan\frac{5\pi}{18}\tan\frac{7\pi}{18}=\frac {\sqrt 3}{3}\thinspace .\end{align}
$$
Note that, you can also prove that some other identities . For instance, try to show that :
$$
\begin{align}\bbox[5px,border:2px solid #C0A000]{\tan^4\frac{\pi}{18}+\tan^4\frac{5\pi}{18}+\tan^4\frac{7\pi}{18}=59}\end{align}
$$