$n\in\mathbb{N}$, find the limit \begin{equation} \lim_{n\to\infty} e^{\frac{n}{4}}n^{-\frac{n+1}{2}}(1^1\cdot2^2\cdot\cdots\cdot n^n)^{\frac{1}{n}} \end{equation} I calculate the limit in the following way:
Express the third term in this \begin{equation} (1^1\cdot2^2\cdot\cdots\cdot n^n)^{\frac{1}{n}}=\left(\frac{(n!)^{n+1}}{1!\cdots n!}\right)^{\frac{1}{n}}=\left(\frac{(n!)^{n+1}}{\prod_{k=1}^{n}k!}\right)^{\frac{1}{n}} \end{equation} Apply Stirlings forluma, the denominator can be approximated as \begin{equation} \prod_{k=1}^{n}k!=\prod_{k=1}^{n}\sqrt{2\pi}k^{k+\frac{1}{2}}e^{-k}=(2\pi)^{\frac{n}{2}}(n!)^{\frac{1}{2}}e^{-\frac{n(n+1)}{2}}\prod_{k=1}^{n}k^{k} \end{equation} Use Euler-Maclaurin's summation formula, the last term tends to \begin{equation} \prod_{k=1}^{n}k^{k}=\exp\left(\sum_{k=1}^{n}k\ln k\right)\sim\exp\left(\frac{1}{2}n^2\ln n-\frac{1}{4}n^2+\frac{1}{2}n\ln n+\frac{1}{12}\ln n+O(1)\right) \sim n^{\frac{n(n+1)}{2}}e^{\frac{n^2}{4}} \end{equation} Substitute it back to the limit and did an annoying elimination, finally got the answer $1$. Is there any other better way to change the third term to an easier form?