Show that for every $n\ge2$,we have:
\begin{equation} \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\cdots+\frac{1}{n^2}<1-\frac{1}{n} \end{equation}
Prove by induction:
- Base case:
\begin{equation} \frac{1}{2^2}<\frac{1}{2}, \end{equation} is valid.
We then assume that the statement is also true for $n=k$ \begin{equation} \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\cdots+\frac{1}{(k)^2}<1-\frac{1}{k} \end{equation}
We prove it for $n=k+1$ \begin{equation} \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\cdots+\frac{1}{(k+1)^2}<1-\frac{1}{k+1} \end{equation}
\begin{equation} \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\cdots+\frac{1}{(k+1)^2}<\frac{k}{k+1} \end{equation}
\begin{equation} \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\cdots<\frac{k(k+1)-1}{(k+1)^2} \end{equation}
Put $(k+1)=n$ and obtain:
\begin{equation} \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\cdots<\frac{(n-1)(n)-1}{(n)^2} \end{equation}
But I can't solve this one.
Any ideas?
Thanks