0

Given two differentiable manifolds $\mathcal M$ and $\mathcal N$ I needed to show that $$\mathcal M, \; \mathcal N \mbox{ orientable } \Rightarrow \mathcal M \times \mathcal N \mbox{ orientable.}$$ This was posed as exercise 4.3-3 on p. 141 in Marsden's 'Introduction to Mechanics and Symmetry' book.

I already have a solution (I think), but I'm not really happy with it because it uses coordinates and it's way too long for my taste.

So my questions concern the solution that I have included below. They are:

  1. Is it possible to make my proof completely coordinate independent? (This concerns Lemma 1)
  2. Can the proof be made shorter somehow? (The fact that the proved statement seems rather trivial and the proof turned out rather long is really bewildering to me.)
  3. Is there a better way to prove Lemma 3? Maybe using derivations instead?
  4. Are there any mistakes?

Thanks in advance for any suggestions.

I know that there have already been several questions / discussions pertaining to this particular problem on here but they are either using concepts from algebraic topology that I don't understand (yet?), or work wrt. to bases, or in charts (using jacobian determinants) both of which I try to avoid whenever possible. The most concise answer on here I have found in this post which practically agrees with my solution attempt (and even shows the converse statement) but for my taste still works too much wrt. to coordinates.

Notation:

  • $\oplus$ denotes the inner direct sum of vector spaces, i.e. let $C$ be a vector space, and $A \subset C, B \subset C$ linear subspaces then $A \oplus B = C$ means $C \subset A + B$ and $A \cap B = \{0\}$.
  • The tangent map for a map $\varphi: \mathcal M \to \mathcal N$ between differentiable manifolds $\mathcal M$ and $\mathcal N$ is denoted by $T\varphi: \mathcal{TM} \to \mathcal {TN}$ (notation as used in the book).
  • The pullback mapping for a map $\varphi: \mathcal M \to \mathcal N$ between differentiable manifolds $\mathcal M$ and $\mathcal N$ is denoted by $\varphi^*$.

My solution attempt:

Theorem. $\mathcal M, \; \mathcal N \mbox{ orientable } \Rightarrow \mathcal M \times \mathcal N \mbox{ orientable.}$

$\mathcal M, \mathcal N$ orientable implies that there exist nowhere vanishing volume forms $\mu$ and $\nu$ on $\mathcal M$ and $\mathcal N$, respectively. Let $\pi_{\mathcal M}: \mathcal M \times \mathcal N \to \mathcal M,\; \pi_{\mathcal N}: \mathcal M \times \mathcal N \to \mathcal N$ be the natural projection maps. Then by Lemma 1 $$\omega = \pi_{\mathcal M}^* \mu \wedge \pi_{\mathcal N}^* \nu,$$ is a nowhere vanishing volume form on $\mathcal M \times \mathcal N$. Hence $\mathcal M \times \mathcal N$ is orientable.$\square$

Lemma 1. $\omega$ is a nowhere vanishing volume form.

Let $\{\mathrm d a^i\},\; \{\mathrm d b^i\}$ be local bases for $\mathcal T^* \mathcal M$ and $\mathcal T^* \mathcal N$, respectively. Then by Lemma 2 $\{dx^i:= \pi_{\mathcal M}^*\mathrm d a^i\} \cup \{dy^i:= \pi_{\mathcal N}^*\mathrm d b^i\}$ is a local basis for $\mathcal T^*(\mathcal M \times \mathcal N).$

Wrt. these local bases one has$$ \begin{align} \mu &= \mu' \mathrm d a^1 \wedge \cdots \wedge \mathrm d a^m,\\ \nu &= \nu' \mathrm d b^1 \wedge \cdots \wedge \mathrm d b^n,\\ \end{align} $$where $m = \mathrm {dim} \mathcal M,\; n = \mathrm {dim} \mathcal N,$ and $\mu',\; \nu'$ are nowhere vanishing smooth functions on $\mathcal M$ and $\mathcal N$, respectively. Then $$ \begin{align} \omega &= \pi_{\mathcal M}^* \mu \wedge \pi_{\mathcal N}^* \nu\\ &= (\pi_{\mathcal M}^* \mu' \pi_{\mathcal M}^* \mathrm d a^1 \wedge \cdots \wedge \pi_{\mathcal M}^* \mathrm d a^m) \wedge (\pi_{\mathcal N}^* \nu' \pi_{\mathcal N}^* \mathrm d b^1 \wedge \cdots \wedge \pi_{\mathcal N}^* \mathrm d b^n)\\ &= \mu' \circ \pi_{\mathcal M} \, \nu' \circ \pi_{\mathcal N} \, \mathrm d x^1 \wedge \cdots \wedge \mathrm d x^m \wedge \mathrm d y^1 \wedge \cdots \wedge \mathrm d y^n \end{align}$$ is clearly a nowhere vanishing volume form on $\mathcal M \times \mathcal N.\,\square$

Lemma 2. $\mathcal T^*(\mathcal M \times N) = \pi_{\mathcal M}^* (\mathcal T^* \mathcal M) \oplus \pi_{\mathcal N}^* (\mathcal T^* \mathcal N).$

First observe that the pullback wrt. to $\pi_{\mathcal M}$ restricted to the cotangent space of $\mathcal M$ is just the adjoint $(T\pi_{\mathcal M})^*: \mathcal T^* \mathcal M \to \mathcal T^*(\mathcal M \times \mathcal N)$ of the tangent map, i.e. $\pi_{\mathcal M}^*|_{\mathcal T^* \mathcal M} = (T\pi_{\mathcal M})^*.$ Thus $\pi_{\mathcal M}^* (\mathcal T^* \mathcal M) = (T\pi_{\mathcal M})^* (\mathcal T^* \mathcal M) \subset \mathcal T^*(\mathcal M \times N)$.

Since $\pi_{\mathcal M}$ is surjective, $T\pi_{\mathcal M}$ is also surjective and hence $(T\pi_{\mathcal M})^*$ is injective. Due to the finite dimensions of the involved spaces one concludes $\mathrm{dim}(\pi_{\mathcal M}^*(\mathcal T^* \mathcal M)) = \mathrm{dim}(\mathcal T^* \mathcal M) = \mathrm{dim}(\mathcal T \mathcal M) = \mathrm{dim}(\mathcal M).$

Repeating the same steps for $\mathcal N$ one obtains $\pi_{\mathcal N}^* (\mathcal T^* \mathcal N) = (T\pi_{\mathcal N})^* (\mathcal T^* \mathcal N) \subset \mathcal T^*(\mathcal M \times N)$ and $ \mathrm{dim}(\pi_{\mathcal N}^*(\mathcal T^* \mathcal N)) = \mathrm{dim}(\mathcal N).$

Finally$$ \begin{align} \mathrm{dim}(\pi_{\mathcal M}^*(\mathcal T^* \mathcal M)) + \mathrm{dim}(\pi_{\mathcal N}^*(\mathcal T^* \mathcal N)) &= \mathrm{dim}(\mathcal M) + \mathrm{dim}(\mathcal N)\\ &= \mathrm{dim}(\mathcal M \times \mathcal N)\\ &= \mathrm{dim}(\mathcal T^*(\mathcal M \times \mathcal N)), \end{align}$$where again the finite dimensionality of the involved spaces was made use of.

Let $\varphi \in \pi_{\mathcal M}^* (\mathcal T^* \mathcal M) \cap \pi_{\mathcal N}^* (\mathcal T^* \mathcal N)$ and let $u \in \mathcal T(\mathcal M \times \mathcal N)$, s.t. $\alpha$ and $u$ share the same base point in $\mathcal M \times \mathcal N$. By construction one has $\varphi = \pi_{\mathcal M}^* \alpha = \pi_{\mathcal N}^* \beta$ for some $\alpha \in \mathcal T^* \mathcal M,\,\beta \in \mathcal T^* \mathcal N.$ Moreover by Lemma 3 $u = v + w,\, v \in \mathrm{ker}(T\pi_{\mathcal M}),\, w \in \mathrm{ker}(T\pi_{\mathcal N})$.

Hence $$ \begin{align} \varphi(u) &= \varphi(v + w) = \varphi(v) + \varphi(w)\\ &= \pi_{\mathcal M}^* \alpha(v) + \pi_{\mathcal N}^* \beta(w) = \alpha(T\pi_{\mathcal M}v) + \beta(T\pi_{\mathcal N}w)\\ &= \alpha(0) + \beta(0) = 0 \end{align}$$ and therefore $\varphi = 0$. Hence $\pi_{\mathcal M}^* (\mathcal T^* \mathcal M) \cap \pi_{\mathcal N}^* (\mathcal T^* \mathcal N) = \{0\}.$$\square$

Lemma 3. $\mathcal T(\mathcal M \times N) = \mathrm{ker}(T\pi_{\mathcal M}) \oplus \mathrm{ker}(T\pi_{\mathcal n}).$

Remark: To show this I use the 'a vector is an equivalence class of curves' interpretation. I'm not particularly happy with this part. Is there a better / more elegant way? Maybe using derivations instead?

Let $u \in \mathrm{ker}(T_{(p,q)}\pi_{\mathcal M}) \cap \mathrm{ker}(T_{(p,q)}\pi_{\mathcal N})$. Then $u = [\gamma]$ is an equivalence class of curves $\gamma: ]-\varepsilon, \varepsilon[ \to \mathcal M \times \mathcal N$ which satisfy $\gamma(0) = (p, q),\; \left.\frac{\mathrm d}{\mathrm d t}\right|_{t=0}\pi_{\mathcal M}\circ\gamma = 0$ and $\left.\frac{\mathrm d}{\mathrm d t}\right|_{t=0}\pi_{\mathcal N}\circ\gamma = 0.$ BuČ› then it must also contain the constant curve $c \equiv (q, p)$, which can only be the case if $u = [c] = 0.$ Hence $\mathrm{ker}(T_{(p,q)}\pi_{\mathcal M}) \cap \mathrm{ker}(T_{(p,q)}\pi_{\mathcal N}) = \{0\}.$

Finally since $T\pi_{\mathcal M}$ is surjective one has $T\pi_{\mathcal M}(\mathcal {T}(\mathcal M \times \mathcal N)) = \mathcal {TM}.$ Hence $\mathrm{dim}(\mathrm{ker}(T\pi_{\mathcal M})) = \mathrm{dim}(\mathcal M \times \mathcal N) - \mathrm{dim}(\mathcal M) = \mathrm{dim}(\mathcal N),$ and similarly $\mathrm{dim}(\mathrm{ker}(T\pi_{\mathcal N})) = \mathrm{dim}(\mathcal M)$ so that $\mathrm{dim}(\mathrm{ker}(T\pi_{\mathcal M})) + \mathrm{dim}(\mathrm{ker}(T\pi_{\mathcal M})) = \mathrm{dim}(\mathcal M \times \mathcal N).\square$

0 Answers0